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THE UNILATERAL QUADRATIC MATRIX EQUATION AND PROBLEM
OF UPDATING OF PARAMETERS OF MODEL

V.B. LARIN1

Abstract. The algorithm of construction of solutions of the unilateral quadratic matrix equa-

tion in case of complex eigenvalues of the corresponding matrix pencil is offered. As application,

the problem of updating parameters of model by experimentally estimation of eigenvalues of this

system is considered. Efficiency of the offered procedure of updating is shown on the example

of system with two degree of freedoms.
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1. Introduction

It is known, that various engineering problems are connected with the theory of oscillations.
Here it is necessary to note the theory of strongly damped systems [4], in which central place
occupy the problems of determination of matrix roots of the equations

A2X
2 + A1X + A0 = 0. (1)

In [2] matrix equation (1) is called as the unilateral quadratic matrix equation (UQME). Here
the wide range of problems of control in which it is necessary to find the solution of UQME is
noted. It is natural, that in different problems those or other solutions of (1) can be of interest.
Thereupon, as well as in [4], we will compare with (1) the matrix pencil

L(λ) = A2λ
2 + A1λ + A0. (2)

Let a size of the matrices in (1) is equal to n× n, A2 = I, hereinafter I - an identity matrix
of a corresponding size. Root (X1) of the equation (1) allows factorizing the pencil (2):

L(λ) = (Iλ− _
X1)(Iλ−X1). (3)

As it is noted in [4], generally speaking, the matrix
_
X1= −A1 − X1 will not be solution of

the equation (1). However, if A0 = AT
0 > 0, A1 = AT

1 > 0 together with the matrix X1 solution
of the equation (1) will be also the matrix

X2 = −A1 −XT
1 . (4)

Hereinafter, the superscript means a transposition. It is essential, that in the depending on
the eigenvalues of the pencil (2) it is possible to consider various problems of factorization, i.e.
representation the pencil (2) in the form of (3). So, in [6], it is assuming, that the eigenvalues
of the pencil (2) ordered by modulo , satisfy to the relation

|λn| < ρ < |λn+1| , (5)
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where ρ -is some number. In [6], by this assumption, it is considered the algorithms of construc-
tion of solutions of (1) (X+, X−), such the eigenvalues X+ coincide with λ1, . . . , λn, and the
eigenvalues X− coincide with λn+1, . . . , λ2n. Thus, it is possible to tell, that in the considered
above case strongly damped systems, the problem of determination of X+, X− corresponds to
the problem of factorization of the polynomial (2) concerning to a circle of radius ρ. However,
if among eigenvalues of the pencil (2) there are complex eigenvalues with a small or zero real
part, generally speaking, can not exist solutions of (1) with the properties noted above. For
example, let in the equation (1) A2 = I, A1 = 0, A0 = diag

{
ω2

1, ω2
2

}
, ω2

2 > ω2
1. In this case

λ1,2 = ±iω1, λ3,4 = ±iω2 , i.e. the condition (5) is fulfilled. However, the equation (1) has no
root X1 which eigenvalues would coincide with λ1,2. Really, if there was such root, the equality

X2
1 = −A0

would be fulfilled. But that is not possible, since both eigenvalues of matrix X1 are equal to
−ω2

1 while eigenvalues of matrix A0 are equal to ω2
1, ω2

2 . Thus, in a considered example it is
expedient to choose as a solution of (1) the matrix

X+ = diag {iω1, iω2 } ,

which eigenvalues lay in upper half plane (Imλ) > 0), or matrix X− = −X+ which eigenvalues
lay in lower half-plane (Im(λ) < 0). In other words, it is expedient to consider a problem of a
factorization (2) concerning the real axis. Farther, assuming, that all eigenvalues of the pencil
(2) are complex, the algorithm of construction of such solutions of (1) will be considered. This
algorithm is based on procedure of computing of the matrix sign function [1].

As application of such solutions of (1), the iterative procedure of an improvement of estimation
of parameters of weakly damped mechanical system is considered. In this procedure are using
the results of estimation of eigenvalues which, in turn, can be received as a result of handling of
transients in this system (see the example).

2. The unilateral quadratic matrix equation

Let’s rewrite the equation (1) in the form
[

I 0
0 A2

] [
I

X

]
X =

[
0 I

−A0 −A1

] [
I

X

]
. (6)

In (6) and further, 0 -is a zero matrix of a corresponding size. Let’s notice, that if matrix A2

has inverse matrix, for determination of the solution of (1) it is possible to use the matrix sign
function method [1]. In this case the relation (6) can be rewritten as:

[
I

X

]
X = H

[
I

X

]
,H =

[
0 I

−A−1
2 A0 −A−1

2 A1

]
. (7)

Let’s introduce concept of a matrix sign function [1, 3]. Let matrix Z has no eigenvalues on
the imaginary axis. I.e. this representation takes place

Z = τ

[
v 0
0 π

]
τ−1,

where the matrix v has eigenvalues only in the left half-plane, and the matrix π - only in the
right half-plane. The sign function of matrix Z is defined as follows

sgnZ = τ

[ −Iv 0
0 Iπ

]
τ−1,
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where the identity matrices Iv,Iπ has sizes of blocks v and π accordingly. We will notice, that
there is a simple procedure of evaluation of sgnZ, namely

sgnZ = lim it
k→∞

Zk, Zk+1 =
1
2

(
Zk + Z−1

k

)
, Z0 = Z. (8)

Let’s assume, that the matrix H in (7) has no real eigenvalues. In this case, the eigenvalues of
the matrix H will be symmetrical arrangement concerning to the real axis. Let the eigenvalues
of the matrix X+ lay in the upper half plane. Then eigenvalues of the matrix iX+ will lay in
the left half-plane. Having multiplied left and right parts of (7) on i, we rewrite this relation in
the form [

I

X+

]
iX+ = iH

[
I

X+

]
. (9)

Let’s apply the procedure (8) to both sides of (9). We describ only the first step of this
procedure. Having multiplied (9) at the left on (iH)−1, and on the right on (iX+)−1 we get

(H)−1

[
I

X+

]
=

[
I

X+

]
(iX+)−1 . (10)

Combining (9) and (10), and multiplying the result on 1/2 we obtain

[
I

X+

]
·
(

iX+ + (iX+)−1

2

)
=

(
iH + (iH)−1

2

) [
I

X+

]
.

Continuing this process and taking into account, that sgn(iX+) = −I, we have

−
[

I

X+

]
= sgn(iH) ·

[
I

X+

]
. (11)

The relation (11) can be rewritten as

(I + sgn(iH)) ·
[

I

X+

]
= 0. (12)

Similar calculations can be done with reference to other root of (1) (X−). As eigenvalues
of X− lay in the lower half-plane, similar procedure allows one to get the following relation
determining X−

(I − sgn(iH)) ·
[

I

X−

]
= 0. (13)

Thus, determination of solutions X+, X− of the equation (1) after evaluation of sign function
of the matrix iH, is actually reduced to the procedure of solution of (1) to solution of system
of linear equations (12), (13).

Let’s continue to consider a case when matrix A2 is invertible. In this case it is possible
to specify rather simple procedure of improvement of the solution (1) received by means of
described above algorithm [6]. So, let it is known X0 – some approached value of a solution of
the equation (1).

The solution of the equations (1) we will search in the form:

X = X0 + εX1, (14)

where εX1 – is the small correction (ε -is small parameter). Having substituted (14) into (1)
and neglecting the terms of order ε2, we have

(X0 + A−1
2 A1)εX1 + εX1X0 = −X2

0 −A−1
2 A1X0 −A−1

2 A0. (15)
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The relation (15) allows using for determination of εX1 standard procedure lyap.m of MATLAB
package.

3. Sensitivity of eigenvalues

Let’s consider a possibility to use described above solutions of the equation (1) in the problem
of determination of sensitivity of eigenvalues to changing of parameters of system [8] and in
the problem of updating of parameters of model [9]. Let it is assignment the system (model)
movement of which be described by the following Lagrange equation

Mq̈ + Bq̈ + Kq = 0. (16)

In this equation q ∈ Rn is vector of generalized co-ordinates, the matrix is considered fixed,
and matrices B, K depend on parameters βi,γj as follows

B = B0 + δB, K = K0 + δK, δB =
s∑

i=1

βiBi, δK =
p∑

j=1

γjKj . (17)

In these relations, the matrices Bi, i = 0, ..., s, Kj , j = 0, ..., p are specified. It is necessary to
find the dependence on parameters βi, γj (which are assumed small) changes of eigenvalues of
system (16).

In other words, let are known λi(i = 1, ..., 2n) eigenvalues of the differential equation (16) as
zero values of δB and δK. It is necessary to find the dependence of increments δλi of these
eigenvalues on parameters βi, γj . We will show, that in this problem it is possible effectively to
use solutions of the equation (1), assuming, that all eigenvalues λi are complex. So, let solutions
(roots) X+, X− of the equations (1), in which A2 = M, A1 = B0, A0 = K0 are known. As it
has been noted above, join of n eigenvalues of each of matrices X±, gives 2n eigenvalues of the
equation (1). Thus, it is enough to consider, for example, this problem only for n eigenvalues
λi of the matrix X+ which we will designate further as X (eigenvalues of the matrix X− will be
complexly conjugate to the eigenvalues of the matrix X+).

Let’s consider relations [8] which define sensitivity of eigenvalues. As well as in [8], it is
supposed, that among eigenvalues λi there are no multiple ones. We designate as Dxλi a matrix
of sensitivity of eigenvalue λi to the changing of elements Xkl of matrix X

Dxλi =
[

∂λi

∂Xkl

]
.

These matrices, according to (15) [8] are defined by the following relation
[

Dxλ1 ... Dxλn

]B
=

(
V −1 ⊗ I

) [
I XT ...

(
XT

)n−1
]B

, (18)

V =




1 ... 1
λ1 λn
...

...
λn−1

1 λn−1
n


 .

In (18) ”⊗ ” means the Kronecker tensor product (procedure kron.m of MATLAB package),
matrix V is the Vandermonde matrix and for its definition it is possible to use procedure van-
der.m of MATLAB package. The superscript “B”, as well as in [8] means the block transpose.
So, in the case of matrix 2× 2, the relation (18) has a form

[
Dxλ1

Dxλ2

]
=

(
V −1 ⊗ I

) [
I

XT

]
.
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According to (23), (24) [8], the following relations, which can be used for control of accuracy
of the evaluation of matrices Dxλi , take place:

n∑

i=1

DXλi = I,
n∑

i=1

λj
iDxλi = (XT )j .

Let’s notice, that use in this problem of the solution of the equation (1) has allowed to halve
a size of the Vandermonde matrix.

Thus, if it is known a variation of matrix X caused by a changing of this or that parameter
(βi or γj), then, is possible, using (18) to find a corresponding variation of eigenvalues λi. We
determine the connection of variation δX of matrix X with parameters βi, γj , considering the
small value of matrices δX, δB, δK. According to (1), in linear approach, the following relation
takes place

M (XδX + δXX) + B0δX + δBX + δK = 0.

If M=1 exist’s, this relation can be rewritten in the form of Lyapunov equation
(
X + M−1B0

)
δX + δXX = −M−1δBX −M−1δK. (19)

Let’s notice, that according to (17) it is possible to present δX as a linear combination of the
solutions of the equations similar to (19):

δX =
s∑

i=1

βiδX
i
2 +

p∑

j=1

γjδX
j
k. (20)

Here δXV
2 and δXj

k are solutions of the following equations similar to (19)
(
X + M−1B0

)
δXV

2 + δXV
2 X = −M−1BiX, (21)

(
X + M−1B0

)
δXj

k + δXj
kX = −M−1Kj . (22)

Relations (18), (20) – (22) will allow one to construct the dependence of δλ on parameters
βi, γj . Let δλi

r be variation of eigenvalue λr which is caused by changing of the parameter βi,
and δλj

r is variation of eigenvalue λr which is caused by changing of the parameter γj . These
variations are defined by following relations

δλi
r = βifri, fri = tr(δX i

2 (Dxλr)
T ), (23)

δλi
r = γjψrj , ψrj = tr(δXj

k (Dxλr)
T ). (24)

Here ”tr” – means a trace of matrix. In others words, the dependance on parameters of
variation of eigenvalue δλr is determined as follows

δλr =
s∑

i=1

βifri +
p∑

j=1

rjψrj . (25)

Taking into consideration (25), designating δλ =
[

δλ1 . . . δλn

]T
, β =

[
β1 . . . βs

]T
,

γ =
[

γ1 . . . γp

]T
, we get following relation

δλ = Fβ + ψγ, F = [fri] , ψ = [ψrj ] . (26)

Elements fri, ψrj of matrices F, ψ are defined by (23), (24).
Now give detail description of the procedure of use of this relation in the considered problem

of updating of parameters of model, where vector δλ is considered as a known, and vectors β, γ

are subject to determination. We will notice, that elements δλi of the vector δλ are complex
numbers determining a changing of the real and imaginary part of the corresponding complex
eigenvalue (λi). Thereupon it is expedient to present vector δλ in the form of the vector of
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size 2n (vector θ) the first n components of which coincide with the real parts of the vector δλ,
and remained n component corresponds to the imaginary part. In turn, it will allow rewriting
system (26) in the form of system 2n linear equations

θ = Dz,D = [F ψ] , z =
[
βT γT

]T
. (27)

Thus, if in (17) the number of parameters of model, which are subject to updating, does not
exceed 2n (s + p ≤ 2n), the system (27) allows one to find the corresponding corrections. So,
for example, if s + p = 2n and matrix D−1 exists, the system (27) can be rewritten in the form

z = D−1θ. (28)

As these linear relations ((26) - (28)) are correct for enough small values of θ and z, generally
speaking, the procedure of updating of parameters β and γ should be iterative (see example).
We will notice, that in differ from [9], in examined statement of the problem of updating of
parameters of model, it is supposed to use the ”experimental” information about eigenvalues
of system (16) only (that allows generating vector θ). The presence of the similar information
about eigenvectors of this system is not supposed.

4. Example

Let’s consider the mechanical system consisting of two masses connected by springs and
dampers, movement of which is described by the equation (16). The matrices, appearing in
(17)are taken as

M = diag {m1,m2} , B0 =
[

b1 −b1

−b1 b1 + b2

]
,K0 =

[
c1 −c1

−c1 c1 + c2

]
,

B1 =
[

1 −1
−1 1

]
, B2 =

[
0 0
0 1

]
,K1 = B1,K2 = B2, (29)

m1 = 10,m2 = 1, b1 = 0, b2 = 0, c1 = 40, c2 = 5,

β1 = 0, β2 = 5, γ1 = 10, γ2 = 5.

In [5], the procedure is described for the identification of the system (16), (17), (29) by results
of transient registration. By using of this procedure, the following estimations of eigenvalues of
this system have been obtained (table 2 [5]):

λ12 = −2.3316± 7.5532i,

λ34 = −0.1745± 0.8765i, (30)

which will be used in the problem of updating parameters of model as the ”experimental”
obtained data. Thus, in the considered problem, the initial value of parameters is determined
by matrices M, B0,K0 (β1 = β2 = γ1 = γ2 = 0). It is necessary by experimental data (by
estimations (30)) to find the matrices B, K, i.e. to estimate values of the parameters β1, β2, γ1, γ2

b̄1 = b1 + β1, b̄2 = b2 + β2, c̄1 = c1 + γ1, c̄2 = c2 + γ2. (31)

As it was already noted, the relation (28) is correct for enough small value of θ and z.
Therefore, in the considered problem it expedient to use two iterative cycles of updating of
parameters. Explicitly we will describe the first cycle, since the second is similar. So, applying
algorithm of the item 2 to the equation (1), in which A2 = M, A1 = B0, A0 = K0, according
to (12), we get the following solution

X+ =
[

0 + 1.1130i 0 − 0.5255i
0 − 5.2548i 0 + 6.4991i

]
, (32)
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which is satisfied (1) with accuracy 10−14. Thereupon there is no necessity to use the procedure
of the improvement by (15).

Eigenvalues of the matrix X+, defined by (32), are the following

λ1 = 0.6416i, λ2 = 6.9705i. (33)

Using (18), we find the matrices Dxλ1, Dxλ2. Using these matrices it is possible to construct
the matrix D, which is appearing in (28)

D =




−0.0005 −0.0372 0 0
−0.5495 −0.4628 0 0

0 0 0.0008 0.0580
0 0 0.0788 0.0664


 .

According to (30), (33) the vector θ in (28) has a form

θ = [−0.1745 − 2.3316 0.2349 0.5827]T.

By these data, according to (28), the vector z and corresponding estimations of parameters
b̄1, b̄2, c̄1, c̄2, which were used as initial data in the second iterative cycle, have been found.

Let’s notice, that in the second cycle the matrices X+. D and the vector θ are

X+ =
[ −0.0150 + 1.2526i − 0.1336 − 0.5065i

1.6370 − 5.0651i − 2.4911 + 6.6387i

]
,

D =




−0.0008 − 0.0351 − 0.0010 0.0054
−0.5492 − 0.4649 0.0010 − 0.0054
−0.0010 − 0.0020 0.0011 0.0413
−0.1745 − 0.1972 0.0774 0.0676


 ,

θ = [−0.0162 0.0162 0.0457 0.4926]T.

Result for the evaluations are given in the table 1.

Table 1

I II III IV V
b̄1 0 0.3005 -0.1081 0 0
b̄2 0 4.6816 5.1311 5.0042 5
c̄1 40 44.0283 49.7709 49.7096 50
c̄2 5 8.9937 9.9576 9.9379 10
d∆ 3.4239 0.7004 0.0245 0.0245 0.0146

In the table 1 the following notation are accepted: b̄1, b̄2, c̄1, c̄2 – estimations of parameters (31)
of system; dΛ – norm of a difference of the vectors, one of which is the vector of ”experimentally
received eigenvalues (30), the second – the vector of eigenvalues of the system (16), parameters of
which are given in the corresponding column of table. So, columns I - IV contain estimations of
parameters of system: the column I corresponds to the initial approach (B = B0, K = K0); the
column II contains the estimations of parameters received after the first iteration; in the column
III the estimations received after the second iteration are given. Here it should be noted, that
after the second iteration, as a result of use of the relation (28), the value of estimation b̄1 has
turned out negative. Thereupon, in the second iteration of the procedure of solution, so-called
NNLS problems [7] with reference to system (27) (procedure nnls.m of MATLAB package) have
been used. These outcomes are given in the column IV. Exact values of the parameters of system
are given in the column V. Thus, comparing the initial values of estimations of parametres of
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system (a column I), the values of estimations obtained as a result of two iterations (a column
IV) and exact values of parametres of system (a column V), it is possible to state, about the
high efficiency of the proposed procedure of the model parameters updating in the considered
example.

5. Conclusion

The algorithm of construction of solutions of the unilateral quadratic matrix equation in case
of complex eigenvalues of the corresponding matrix pencil is offered. As application, the problem
of updating parameters of model by experimentally estimation of eigenvalues of this system is
considered. Efficiency of the offered procedure of updating is shown on the example of system
with two degree of freedoms.
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