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Abstract
Let G = (

R
N , ◦, δλ

)
be a homogeneous group, Q is the homogeneous dimension of G,

X0, X1, . . . , Xm be left invariant real vector fields on G and satisfy Hörmander’s rank con-
dition on R

N . Assume that X1, . . . , Xm (m ≤ N − 1) are homogeneous of degree one and
X0 is homogeneous of degree two with respect to the family of dilations

(
δλ

)
λ>0. Consider

the following hypoelliptic operator with drift on G

L =
m∑

i, j=1

ai j Xi X j + a0X0,

where (ai j ) is a m × m constant matrix satisfying the elliptic condition in R
m and a0 �= 0. In

this paper, for this class of operators, we obtain the generalized Sobolev–Morrey estimates
by establishing boundedness of a large class of sublinear operators Tα , α ∈ [0, Q) generated
by Calderón–Zygmund operators (α = 0) and generated by fractional integral operator
(α > 0) on generalized Morrey spaces and proving interpolation results on generalized
Sobolev–Morrey spaces on G. The sublinear operators under consideration contain integral
operators of harmonic analysis such as Hardy–Littlewood and fractional maximal operators,
Calderón–Zygmund operators, fractional integral operators on homogeneous groups, etc.
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1 Introduction and themain results

Let G be a homogeneous group on R
N and X0, X1, . . . , Xm (m < N ) be left invariant

real vector fields on G. Assume that X1, . . . , Xm are homogeneous of degree one and X0 is
homogeneous of degree two satisfying Hörmander’s condition

rank L(X0, X1, . . . , Xm)(x) = N , x ∈ G,

where L(X0, X1, . . . , Xm) denotes the Lie algebra generated by X0, X1, . . . , Xm . In this
paper we are interested in the following hypoelliptic operator with drift

L =
m∑

i, j=1

ai j Xi X j + a0X0, (1.1)

where a0 �= 0, (ai j )
m
i, j=1 is a constant coefficients matrix satisfying that for some μ > 0,

μ−1|ξ |2 ≤
m∑

i, j=1

ai jξiξ j ≤ μ|ξ |2, ξ ∈ R
m .

Since Hörmander’s classic work [32] for the operators sum of squares was published,
the regularity of hypoelliptic operators structured on Hörmander’s vector fields has attracted
extensive attention [3,8,9,35]. The relative of properties of weak generalized solutions to
elliptic equations constructed by Hörmander’s vector fields was studied in [5,6]. Folland
[21] proved that any Hörmander type operator like (1.1) has a homogeneous fundamental
solution. For the further properties of the fundamental solutions, see Bramanti and Brandolini
[7]. The authors of [7,31,34,44] considered a priori estimates for the operatorL. The operator
L contains many particular cases.When X0 =

n∑

i, j=1
bi j xi∂x j −∂t , Xi = ∂xi , i = 1, 2, . . . , m,

L is a Kolmogorov–Fokker–Planck ultraparabolic operator of the kind

L1u =
m∑

i, j=1

ai j∂
2
xi x j

u +
n∑

i, j=1

bi j xi∂x j u − ∂t u,

where (x, t) ∈ R
n+1, (ai j )

m
i, j=1 is a positive definite matrix, (bi j )

n
i, j=1 is a constant coeffi-

cients matrix with a suitable upper triangular structure. It is clear that L1 is a heat operator,
when m = n, (bi j )

n
i, j=1 = (0)n

i, j=1. For more details see [36,37]. The operator L1 arises in
many research fields, for instance, stochastic processes and kinetic models [13,14,16], math-
ematical finance theory [2,36,45] etc. Since L1 owns a homogeneous fundamental solution
with good properties, many authors still pay attention to it up to now [10,46,48]. In addition,
other examples of (1.1) can see in [7,22].

Morrey spaces and their properties play an important role in the study of local behavior of
solutions to elliptic partial differential equations, refer to [40,47]. In [1,15] the authors showed
the boundedness inMorrey spaces for some important operators in harmonic analysis such as
Hardy–Littlewood operators, Calderón–Zygmund singular integral operators and fractional
integral operators. Moreover, various Morrey spaces are defined in the process of study. In
[24,39,43] the authors introduced and studied the boundedness of the classical operators in
generalized Morrey spaces Mp,ϕ(Rn) (see, also [25,26,29,50]) and etc.

In this paper motivated by these articles, we will establish the boundedness of sublinear
integral operators on generalized Morrey spaces in the framework of homogeneous groups.
The sublinear operators under consideration contain integral operators of harmonic analysis
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such as Hardy–Littlewood and fractional maximal operators, Calderón–Zygmund operators,
potential operators on homogeneous groups, etc. Homogeneous groups include the Euclidean
space, the Heisenberg group, the Carnot group, see [4,12,22,52]. Furthermore, applications to
generalized Sobolev–Morrey estimates for hypoelliptic operators with drift on homogeneous
groups are given. Also, generalized Morrey estimates for the sublinear operators generated
by fractional integral operators on the homogeneous group and an application are obtained.
Recall that the local Morrey-type space was introduced and proved the boundedness in
this spaces of the fractional integral operator and singular integral operators defined on
homogeneous Lie groups by author in [24], see also [27,30].

Let us state the following three main results of the paper.

Theorem 1.1 (Generalized Sobolev–Morrey estimate). Let 1 < p < ∞ and ϕ ∈ �p satisfy
the condition

∫ ∞

r

ess inf t<s<∞ ϕ(x, s) s
Q
p

t
Q
p

dt

t
≤ Cϕ(x, r), (1.2)

where C does not depend on x and r. Let also u ∈ S2
p,ϕ(G) ∩ S1,0

p (G). Then there exists a
constant C > 0 such that

‖u‖S2p,ϕ(G) ≤ C
(
‖Lu‖Mp,ϕ(G) + ‖u‖Mp,ϕ(G)

)
, (1.3)

where

‖u‖S2p,ϕ (G) = ‖u‖Mp,ϕ(G) +
m∑

i=1

‖Xi u‖Mp,ϕ(G) +
m∑

i, j=1

‖Xi X j u‖Mp,ϕ (G) + ‖X0u‖Mp,ϕ (G).

Remark 1.1 Denote by Gp the set of all decreasing functions ϕ : (0,∞) → (0,∞) such

that r ∈ (0,∞) 
→ r
Q
p ϕ(r) ∈ (0,∞) is almost increasing, here Q is the homogeneous

dimension of G. Then for ϕ ∈ Gp the condition (1.2) stays the following form
∫ ∞

r
ϕ(t)

dt

t
≤ C ϕ(r), (1.4)

where C does not depend on r . For the nontriviality of generalized Morrey spaces Mp,ϕ(G)

we assumed in Theorem 1.1 and in the sequel that ϕ ∈ �p , see Lemma 2.2 and Remark 2.3.
Note that the condition (1.2) is weaker than (1.4). Indeed, if (1.4) holds, then

∫ ∞

r

ess inf t<s<∞ ϕ(s) s
Q
p

t
Q
p

dt

t
≤

∫ ∞

r
ϕ(t)

dt

t
.

The following example shows that there exist functions satisfying (1.2) but not (1.4).

Example 1.1 For β ∈ (0, Q
p ) consider the weight function

ϕ(r) = rβ− Q
p

∣∣∣sin
(
max

{
1,

π

r

})∣∣∣ .

If r ∈ (0, π) then ess infr<ζ<∞ ϕ(ζ )ζ
Q
p = 0while for r ∈ (π,∞), ess infr<ζ<∞ ϕ(ζ )ζ

Q
p =

rβ sin 1. Then

∫ ∞

r

ess inf
s<ζ<∞ ϕ(ζ )ζ

Q
p

s
Q
p +1

ds =
{
0, r ∈ (0, π)

rβ− Q
p sin 1, r ∈ (π,∞)

≤ C ϕ(r) .
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The function ϕ does not satisfy the condition (1.4).

Corollary 1.1 Let 1 < p < ∞ and ϕ ∈ Gp satisfy the condition (1.4). Let also u ∈ S2
p,ϕ(G)∩

S1,0
p (G). Then the inequality (1.3) is valid.

If in Theorem 1.1 take ϕ(r) = r
λ−Q

p with 0 < λ < Q, then Mp,ϕ(G) = L p,λ(G) is the
classical Morrey space and we get the following corollary, which were proved in [33].

Corollary 1.2 [33] Let 1 < p < ∞, and 0 < k < 1. Let also u ∈ S2
p,λ(G) ∩ S1,0

p (G). Then
there exists a constant C > 0 such that

‖u‖S2p,λ(G) ≤ C
(
‖Lu‖L p,λ(G) + ‖u‖L p,λ(G)

)
,

where

‖u‖S2p,λ(G) = ‖u‖L p,λ(G) +
m∑

i=1

‖Xi u‖L p,λ(G) +
m∑

i, j=1

‖Xi X j u‖L p,λ(G) + ‖X0u‖L p,λ(G).

Theorem 1.2 (Higher order generalizedSobolev–Morrey estimate). Let1 < p < ∞, ϕ ∈ �p

satisfy the condition (1.2) and k is a positive integer. Let also u ∈ S2
p,ϕ(G) ∩ S1,0

p (G). Then
there exists a constant C > 0 such that

‖u‖S2k+2
p,ϕ (G)

≤ C
(
‖Lu‖S2k

p,ϕ(G) + ‖u‖Mp,ϕ(G)

)
, (1.5)

where ‖u‖S2k
p,ϕ (G) = ∑2k

h=0 ‖Dhu‖Mp,ϕ (G),

‖Dhu‖Mp,ϕ (G) =
∑

‖X ji . . . X jlu‖Mp,ϕ(G),

where X ji . . . X jl is homogeneous of degree h (let us note that X0 is homogeneous of degree
two while the remaining X1, . . . , Xm are homogeneous of degree one).

Corollary 1.3 Let 1 < p < ∞, k is a positive integer and ϕ ∈ Gp satisfy the condition (1.4).
Let also u ∈ S2

p,ϕ(G) ∩ S1,0
p (G). Then the inequality (1.5) is valid.

Corollary 1.4 [33] let 1 < p < ∞, 0 < k < 1 and k is a positive integer. Let also u ∈
S2

p,λ(G) ∩ S1,0
p (G). Then there exists a constant C > 0 such that

‖u‖S2k+2
p,λ (G)

≤ C
(
‖Lu‖S2k

p,λ(G) + ‖u‖L p,λ(G)

)
.

To inspect two theorems, we first prove the boundedness of sublinear operators generated
by Calderón–Zygmund operators T0 in generalized Morrey space on G by applying the
representation formulas of functions. These formulas depend on the fundamental solution
of L. Next generalized Sobolev–Morrey interpolations on the first order derivatives and
higher order derivatives of vector fields are derived. Then based on these results, we obtain
generalized Sobolev–Morrey estimates forL. Instead, we shall apply representation formulas
of higher order derivatives [7] to prove interpolations desired.

Theorem 1.3 (Generalized Morrey estimate). Let 1 < p < q < ∞, 1
q = 1

p − 1
Q , and

ϕ1 ∈ �p, ϕ2 ∈ �q satisfy the condition

∫ ∞

r

ess inf t<s<∞ ϕ1(x, s)s
Q
p

t
Q
q

dt

t
≤ C ϕ2(x, r), (1.6)
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where C does not depend on x and r. Then there exists a constant C > 0 such that for every
Lu ∈ Mp,ϕ1(G), we have

‖Xi u‖Mq,ϕ2 (G) ≤ C‖Lu‖Mp,ϕ1 (G), i = 1, 2, . . . , m.

If in Theorem 1.3 take ϕ1(r) = ϕ(r) ∈ Gp , ϕ2(r) = rϕ(r), then we get the following new
corollary.

Corollary 1.5 Let 1 < p < q < ∞, 1
q = 1

p − 1
Q , and ϕ ∈ Gp satisfy the condition

∫ ∞

r
ϕ(t) dt ≤ Cr ϕ(r), (1.7)

where C does not depend on r. Then there exists a constant C > 0 such that for every
Lu ∈ Mp,ϕ(G), we have

‖Xi u‖Mq,rϕ(r)(G) ≤ C ‖Lu‖Mp,ϕ(G), i = 1, 2, . . . , m.

Corollary 1.6 [33] If 1 < p < ∞, 1/q = 1/p − 1/Q, and 0 < λ < p/q, there exists a
constant c > 0 such that for every Lu ∈ L p,λ(G), we have

‖Xi u‖Lq,λq/p(G) ≤ C ‖Lu‖L p,λ(G), i = 1, 2, . . . , m.

The proof uses the extension of generalized Morrey estimates for the sublinear operators
generated by fractional integral operators Tα , 0 < α < Q in the Euclidean space to the
homogeneous group and application to L.

Sobolev–Morrey spaces arose in the study of elliptic differential equations. Campanato
considered Sobolev–Morrey spaces in [11]. More is investigated on Sobolev–Morrey spaces
[19,20,33,44,48,49]. The embedding relation can be found in [41,42].

It is mentioned that since the second and higher order derivatives of vector fields are
determined by Calderón–Zygmund operators rather than the fractional integral operators,
we cannot use the method here to generalize estimates in Theorem 1.3 to the generalized
Sobolev–Morrey estimates for L.

The plan of the paper is the following. In Sect. 2, we introduce some knowledge of
the homogeneous group G, the fundamental solution for L and the generalized Morrey
spaces. Section 3 is devoted to the proof of boundedness for sublinear operators generated
by Calderón–Zygmund operators T0 in generalized Morrey spaces. Generalized Morrey esti-
mates for sublinear operators generated by fractional integral operators Tα , 0 < α < Q are
given. In Sect. 4 the generalized Sobolev–Morrey interpolation inequalities on G are shown.
The main results are proved in Sect. 5.

By A � B we mean that A ≤ C B with some positive constant C independent of appro-
priate quantities. If A � B and B � A, we write A ≈ B and say that A and B are equivalent.

2 Preliminaries

We now recall some basic notions concerning homogeneous Lie groups. We refer to the
monograph [4] for a detailed treatment of the subject.

Given a pair of smooth mappings

[(x, y) → x ◦ y] : R
N × R

N 
→ R
N ; [x 
→ x−1] : R

N 
→ R
N ,
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the space R
N with these mappings forms a group, in which the identity is the origin. If there

exist 0 < w1 ≤ w2 ≤ · · · ≤ wN , such that the dilations

δλ : (x1, . . . , xN ) 
→ (λw1x1, . . . , λ
wN xN ), λ > 0

are group automorphisms, then the space R
N with this structure is called a homogeneous

group, denoted by G.

Definition 2.1 A homogeneous norm ‖ · ‖ on G is defined in the following way: if for any
x ∈ G, x �= 0, it holds

‖x‖ = ρ ⇔ |δ1/ρx | = 1,

where | · | denotes the Euclidean norm; also, let ‖0‖ = 0.

It is not difficult to verify that the homogeneous norm satisfies

1. ‖δλx‖ = λ‖x‖ for every x ∈ G, λ > 0;
2. there exists c0 ≡ c(G) ≥ 1, such that for every x, y ∈ G,

‖x−1‖ ≤ c0 ‖x‖ and ‖x ◦ y‖ ≤ c0 (‖x‖ + ‖y‖). (2.1)

In view of the above properties, it is natural to define the quasi distance d:

d(x, y) = ‖x ◦ y−1‖.
The ball with respect to d is defined by B(x, r) ≡ Br (x) = {y ∈ G : d(x, y) < r}. Note
that B(0, r) = δr B(0, 1), therefore

|B(x, r)| = r Q |B(0, 1)|, x ∈ G, r > 0, (2.2)

where
Q = w1 + · · · + wN .

We will call that Q is the homogeneous dimension of G and always require Q > 4 in the
sequel. By (2.2) the doubling condition on G holds, that is

|B(x, 2r)| ≤ c|B(x, r)|, x ∈ G, r > 0,

where c is some positive constant, and so (G, dx, d) is a space of homogeneous type.
Let B be a ball on G and λB (λ > 0) denote the ball with the same center as B whose

radius is λ times that of B.

Definition 2.2 Differential operatorsY onG are said to be homogeneous of degreeβ (β > 0),
if for every test function ϕ,

Y (ϕ(δλx)) = λβ(Yϕ)(δλx), λ > 0, x ∈ G;
a function f is called homogeneous of degree α, if

f ((δλx)) = λα f (x), λ > 0, x ∈ G.

Clearly, if Y is a homogeneous differential operator of degree β and f is a homogeneous
function of degree α, then Y f is homogeneous of degree α − β.

Lemma 2.1 (See [7]) Let L be a left invariant homogeneous differential operator of degree
2 on G, then there is a unique fundamental solution (·) such that for every test function u
and every x ∈ G,
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(a) (·) ∈ C∞(G\{0});
(b) (·) is homogeneous of degree 2 − Q;
(c) u(x) = (Lu ∗ )(x) = ∫

G
(x ◦ y−1)Lu(y)dy;

(d) Xi u(x) = ∫
G

Xi(x ◦ y−1)Lu(y)dy.
Moreover, for i, j = 1, . . . , m, there exist constants ci, j such that

Xi X j u(x) = V .P.

∫

G

Xi X j(x ◦ y−1)Lu(y)dy + ci jLu(x).

Remark 2.1 If we set i = Xi, i, j = Xi X j, then it is obvious that i is homogeneous
of degree 1 − Q and i j is homogeneous of degree −Q.

Several important integral operators are needed:

Definition 2.3 For any f ∈ L loc
1 (G), theHardy–Littlewoodmaximal operator onG is defined

by

M f (x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

| f (y)|dy, a.e. x ∈ G.

Definition 2.4 For any f ∈ L loc
1 (G), we say that T is a Calderón–Zygmund operator on G if

T f (x) = lim
ε→0

∫

{y∈G:‖x◦y−1‖>ε}
K (x ◦ y−1) f (y)dy = V .P.

∫

G
K (x ◦ y−1) f (y)dy,

where K satisfies

|K (x)| ≤ c

‖x‖Q
; |∇K (x)| ≤ c

‖x‖Q+1 , x �= 0.

Definition 2.5 For any f ∈ L loc
1 (G), the fractional maximal operator Mα and the fractional

integral operator Iα on G are defined by

Mα f (x) = sup
r>0

|B(x, r)|−1+ α
Q

∫

B(x,r)

| f (y)|dy, 0 ≤ α < Q,

Iα f (x) =
∫

G

f (y)

‖x ◦ y−1‖Q−α
dy, 0 < α < Q,

respectively.

If α = 0, then M = M0 is the Hardy–Littlewood maximal operator.
Suppose that Tα , α ∈ [0, Q) represents a linear or a sublinear operator, which satisfies,

for any f ∈ L1(R
n) with compact support and x /∈ supp f , the inequality

|Tα f (x)| ≤ c1

∫

G

| f (y)|
‖x ◦ y−1‖Q−α

dy, (2.3)

where c1 is independent of f and x .
We point out that the condition (2.3) with α = 0 was first introduced by Soria and Weiss

in [51] in the case G = R
n . Condition (2.3) is satisfied by many interesting operators in

harmonic analysis, such as the Calderón–Zygmund operator, Carleson’s maximal operator,
Hardy–Littlewood maximal operators, fractional maximal operator, C. Fefferman’s singu-
lar multipliers, R. Fefferman’s singular integrals, Riesz potentials, Ricci–Stein’s oscillatory
singular integrals, Bochner–Riesz means and so on (see [17,38,51] for details).
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Note that, the maximal operator M , and the Calderón–Zygmund operator T satisfy the
condition (2.3) with α = 0, and the fractional maximal operator Mα , and the fractional
integral operator Iα satisfy the condition (2.3) with 0 < α < Q.

Let 0 < α < Q, 1 ≤ p <
Q
α

and f ∈ L p(G). Then the integral Iα f (x) converges
absolutely for almost every x ∈ G, see [25, Theorem 3.2.1]. The Hardy–Littlewood–Sobolev
result states that (see [22,24], [25, Theorem 3.2.1]) the operator Iα is bounded from L p(G)

to Lq(G) if and only if 1 < p < q < ∞ and α = Q/p − Q/q . Also Iα is bounded from
L1(G) to W Lq(G) if and only if 1 < q < ∞ and α = Q − Q/q .

In the study of local properties of solutions to of partial differential equations, together
with weighted Lebesgue spaces, Morrey spaces L p,λ(G) play an important role, see [23].
They were introduced by C. Morrey in 1938 [40]. The Morrey space in a Carnot group is
defined as follows: for 1 ≤ p ≤ ∞, 0 ≤ λ ≤ Q, a function f ∈ L p,λ(G) if f ∈ L loc

p (G)

and

‖ f ‖L p,λ
:= sup

x∈G, r>0
r− λ

p ‖ f ‖L p(B(x,r)) < ∞.

(If λ = 0, then L p,0(G) = L p(G); if λ = Q, then L p,Q(G) = L∞(G); if λ < 0 or λ > Q,
then L p,λ(G) = �, where � is the set of all functions equivalent to 0 on G.)

We also denote by W L p,λ(G) the weak Morrey space of all functions f ∈ W L loc
p (G) for

which

‖ f ‖W L p,λ(G) ≡ ‖ f ‖W L p,λ(G) = sup
x∈G, r>0

r− λ
p ‖ f ‖W L p(B(x,r)) < ∞,

where W L p(B(x, r)) denotes the weak L p-space of measurable functions f for which

‖ f ‖W L p(B(x,r)) = sup
t>0

t |{y ∈ B(x, r) : | f (y)| > t}|1/p .

We find it convenient to define the generalized Morrey spaces in the form as follows.

Definition 2.6 Let 1 ≤ p < ∞ and ϕ(r) be a positive measurable function on (0,∞). The
generalized Morrey space Mp,ϕ(G) is defined of all functions f ∈ L loc

p (G) by the finite
norm

‖ f ‖Mp,ϕ (G) = sup
x∈G,r>0

r− Q
p

ϕ(r)
‖ f ‖L p(B(x,r)).

Also the weak generalized Morrey space W Mp,ϕ(G) is defined of all functions f ∈ L loc
p (G)

by the finite norm

‖ f ‖W Mp,ϕ (G) = sup
x∈G,r>0

r− Q
p

ϕ(r)
‖ f ‖W L p(B(x,r)).

Remark 2.2 (1) If ϕ(r) = r
λ−Q

p with 0 < λ < Q, then Mp,ϕ(G) = L p,λ(G) is the classical
Morrey space and W Mp,ϕ(G) = W L p,λ(G) is the weak Morrey space.

(2) If ϕ(r) ≡ r− Q
p , then Mp,ϕ(G) = L p(G) is the Lebesgue space and W Mp,ϕ(G) =

W L p(G) is the weak Lebesgue space.

Lemma 2.2 [18] Let ϕ(r) be a positive measurable function on (0,∞).
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(i) If

sup
t<r<∞

r− Q
p

ϕ(r)
= ∞ for some t > 0 and for all x ∈ G,

then Mp,ϕ(G) = �.
(ii) If

sup
0<r<τ

ϕ(r)−1 = ∞ for some τ > 0 and for all x ∈ G,

then Mp,ϕ(G) = �.

Remark 2.3 [18] We denote by �p the sets of all positive measurable functions ϕ on G ×
(0,∞) such that for all t > 0,

sup
x∈G

∥
∥
∥

r− Q
p

ϕ(r)

∥
∥
∥

L∞(t,∞)
< ∞, and sup

x∈G

∥
∥
∥ϕ(r)−1

∥
∥
∥

L∞(0,t)
< ∞,

respectively. In what follows, keeping in mind Lemma 2.2, we always assume that ϕ ∈ �p .

We use the following simplified notation later:

‖Du‖Mp,ϕ(G) =
m∑

i=1

‖Xi u‖Mp,ϕ(G),

‖D2u‖Mp,ϕ(G) =
m∑

i=1

‖Xi X j u‖Mp,ϕ(G) + ‖X0u‖Mp,ϕ(G),

and generally,
‖Dku‖Mp,ϕ (G) =

∑
‖X ji . . . X jlu‖Mp,ϕ(G),

where X ji . . . X jl is homogeneous of degree k (let us note that X0 is homogeneous of degree
two while the remaining X1, . . . , Xm are homogeneous of degree one).

Definition 2.7 For p ∈ [1,∞), a nonnegative integer k, the generalized Sobolev–Morrey
space Sk

p,ϕ(G) consists of all Mp,ϕ(G) functions such that

‖u‖Sk
p,ϕ(G) =

k∑

h=0

‖Dhu‖Mp,ϕ(G)

is finite.
The space Sk

p,ϕ(G) ∩ S1,0
p (G) consists of all functions u ∈ Sk

p(G) ∩ S1,0
p (G) with Dhu ∈

Mp,ϕ(G), and is endowed by the same norm. Recall that S1,0
p (G) is the closure of C∞

0 (G)

with respect to the norm in S1
p(G).

We will use the following statement on the boundedness of the weighted Hardy operator

Hwg(t) :=
∫ ∞

t
g(s)w(s) ds, 0 < t < ∞,

where w is a weight. The following theorem was proved in [28].
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Theorem 2.1 [28] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup
t>0

v2(t) Hwg(t) ≤ C sup
t>0

v1(t) g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)
∫ ∞

t

w(s) ds

sups<τ<∞ v1(τ )
< ∞.

3 Sublinear operators on the spacesMp,'(G)

The following is true for the homogeneous group space [4,22]. Let us note that the homoge-
neous group is a special case of homogeneous spaces, so we can state

Lemma 3.1 [4,22] Let 1 ≤ p < ∞. Then the maximal operator M and Calderón–Zygmund
operator T are bounded on L p(G) for p > 1 and from L1(G) to W L1(G).

Lemma 3.2 [4,22] Let 1 ≤ p < q < ∞, 0 < α <
Q
p and 1

q = 1
p − α

Q . Then the fractional
integral operator Iα is bounded from L p(G) to Lq(G) for p > 1 and from L1(G) to W Lq(G).

The following theorem is valid.

Theorem 3.1 Let 1 ≤ p < ∞ and T0 be a sublinear operator satisfying condition (2.3) with
α = 0 bounded on L p(G) for p > 1, and bounded from L1(G) to W L1(G). Then, for p > 1
the inequality

‖T0 f ‖L p(B) ≤ C r
Q
p

∫ ∞

2c0r
‖ f ‖L p(B(x0,t)) t−

Q
p −1 dt

holds for any ball B = B(x0, r) and for all f ∈ L loc
p (G), where c0 ≥ 1 is the constant from

the triangle inequality (2.1) and C does not depend on f , x0 and r > 0.
Moreover, for p = 1 the inequality

‖T0 f ‖W L1(B) ≤ C r Q
∫ ∞

2c0r
‖ f ‖L1(B(x0,t)) t−Q−1 dt (3.1)

holds for any ball B = B(x0, r) and for all f ∈ L loc
1 (G), where C does not depend on f , x0

and r > 0.

Proof Let p ∈ (1,∞). For arbitrary x0 ∈ G, set B = B(x0, r) for the ball centered at x0 and
of radius r , 2c0B = B(x0, 2c0r). We represent f as

f = f1 + f2, f1(y) = f (y)χ2c0B(y), f2(y) = f (y)χ�
(2c0B)

(y), r > 0,

and have

‖T0 f ‖L p(B) ≤ ‖T0 f1‖L p(B) + ‖T0 f2‖L p(B).

Since f1 ∈ L p(G), T0 f1 ∈ L p(G) and from the boundedness of T0 in L p(G) (see
Lemma 3.1) it follows that:

‖T0 f1‖L p(B) ≤ ‖T0 f1‖L p(G) ≤ C‖ f1‖L p(G) = C‖ f ‖L p(2c0B),

where constant C > 0 is independent of f .
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It’s clear that x ∈ B, y ∈ �
(2c0B) implies 1

2c0
‖x0 ◦ y−1‖ ≤ ‖x ◦ y−1‖ ≤ 3c0

2 ‖x0 ◦ y−1‖.
We get

|T0 f2(x)| �
∫

�
(2c0B)

| f (y)|
‖x0 ◦ y−1‖Q

dy.

By Fubini’s theorem we have
∫

�
(2c0B)

| f (y)|
‖x0 ◦ y−1‖Q

dy ≈

∫

�
(2c0B)

| f (y)|
∫ ∞

‖x0◦y−1‖
dt

t Q+1 dy

≈

∫ ∞

2c0r

∫

2c0r≤‖x0◦y−1‖<t
| f (y)|dy

dt

t Q+1

�
∫ ∞

2c0r

∫

B(x0,t)
| f (y)|dy

dt

t Q+1 .

Applying Hölder’s inequality, we get

|T0 f2(x)| �
∫ ∞

2c0r
‖ f ‖L1(B(x0,t)) t−Q−1dt

�
∫ ∞

2c0r
‖ f ‖L p(B(x0,t)) ‖1‖L p′ (B(x0,t))

dt

t Q+1

≤
∫ ∞

2c0r
‖ f ‖L p(B(x0,t)) t−

Q
p −1 dt . (3.2)

Moreover, for all p ∈ [1,∞) the inequality

‖T0 f2‖L p(B) � r
Q
p

∫ ∞

2c0r
‖ f ‖L p(B(x0,t)) t−

Q
p −1 dt (3.3)

is valid. Thus

‖T0 f ‖L p(B) � ‖ f ‖L p(2c0B) + r
Q
p

∫ ∞

2c0r
‖ f ‖L p(B(x0,t)) t−

Q
p −1 dt .

On the other hand,

‖ f ‖L p(2c0B) ≈ r
Q
p ‖ f ‖L p(2c0B)

∫ ∞

2c0r
t−

Q
p −1 dt

≤ r
Q
p

∫ ∞

2c0r
‖ f ‖L p(B(x0,t)) t−

Q
p −1 dt .

(3.4)

Thus

‖T0 f ‖L p(B) � r
Q
p

∫ ∞

2c0r
‖ f ‖L p(B(x0,t)) t−

Q
p −1 dt .

Let p = 1. From the weak (1, 1) boundedness of T0 (see Lemma 3.1) and (3.4) it follows
that:

‖T0 f1‖W L1(B) ≤ ‖T0 f1‖W L1(G) � ‖ f1‖L1(G) = ‖ f ‖L1(2c0B)

≈ r Q ‖ f ‖L1(2c0B)

∫ ∞

2c0r
t−Q−1dt
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≤ r Q
∫ ∞

2c0r
‖ f ‖L1(B(x0,t)) t−Q−1dt . (3.5)

Then by (3.3) and (3.5) we get the inequality (3.1). ��
Theorem 3.2 Let 1 ≤ p < ∞ and ϕ1, ϕ2 ∈ �p satisfy the condition

∫ ∞

r

ess inf
t<s<∞ ϕ1(x, s) s

Q
p

t
Q
p

dt

t
≤ Cϕ2(x, r), (3.6)

where C does not depend on x and r. Let T0 be a sublinear operator satisfying the condition
(2.3) with α = 0 bounded on L p(G) for p > 1, and bounded from L1(G) to W L1(G). Then
the operator T0 is bounded from Mp,ϕ1(G) to Mp,ϕ2(G) for p > 1 and from M1,ϕ1(G) to
W M1,ϕ2(G).

Proof By condition (3.6) and Theorems 2.1, 3.1 with v2(r) = ϕ2(x, r)−1, v1(r) =
ϕ1(x, r)−1r− Q

p , g(r) = ‖ f ‖L p(B(x,r)) and w(r) = r− Q
p −1 we have for p > 1

‖T0 f ‖Mp,ϕ2 (G) � sup
x∈G, r>0

ϕ2(x, r)−1
∫ ∞

r
‖ f ‖L p(B(x,t)) t−

Q
p −1 dt

= sup
x∈Rn ,r>0

ϕ1(x, r)−1 r− Q
p ‖ f ‖L p(B(x,r)) = ‖ f ‖Mp,ϕ1 (G)

and for p = 1

‖T0 f ‖W M1,ϕ2 (G) � sup
x∈G, r>0

ϕ2(x, r)−1
∫ ∞

r
‖ f ‖L1(B(x,t)) t−Q−1 dt

= sup
x∈G,r>0

ϕ1(x, r)−1 r−Q ‖ f ‖L1(B(x,r)) = ‖ f ‖M1,ϕ1 (G).

��
Corollary 3.1 Let 1 ≤ p < ∞ and ϕ1, ϕ2 ∈ �p satisfy the condition (3.6). Then the maximal
operator M and Calderón–Zygmund operator T are bounded from Mp,ϕ1(G) to Mp,ϕ2(G)

for p > 1 and from M1,ϕ1(G) to W M1,ϕ2(G).

Corollary 3.2 Let 1 ≤ p < ∞ and ϕ ∈ Gp satisfy the condition (1.4). Let T0 be a sublinear
operator satisfying condition (2.3) with α = 0 bounded on L p(G) for p > 1, and bounded
from L1(G) to W L1(G). Then the operator T0 is bounded on Mp,ϕ(G) for p > 1 and from
M1,ϕ(G) to W M1,ϕ(G).

Corollary 3.3 Let 1 ≤ p < ∞ and ϕ ∈ Gp satisfy the condition (1.4). Then the operators M,
T are bounded on Mp,ϕ(G) for p > 1 and from M1,ϕ(G) to W M1,ϕ(G).

Note that for ϕ1(x, r) = ϕ2(x, r) ≡ |B(x, r)| λ−1
p , from Theorem 3.2 we get the following

new result.

Corollary 3.4 Let 1 ≤ p < ∞ and 0 < λ < 1. Let T0 be a sublinear operator satisfying
condition (2.3) with α = 0 bounded on L p(G) for p > 1, and bounded from L1(G) to
W L1(G). Then the operator T0 is bounded on L p,λ(G) for p > 1 and from L1,λ(G) to
W L1,λ(G).

The following corollary for the operators M and T was proved in [33].
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Corollary 3.5 [33] Let 1 ≤ p < ∞ and 0 < λ < 1. Then for p > 1, the operators M, T
are bounded on L p,λ(G) and for p = 1, the operators M, T are bounded from L1,λ(G) to
W L1,λ(G).

Next we state one of our main results. First we present some estimates which are the main
tools for proving our theorems, on the boundedness of the operators Tα with α ∈ (0, Q) on
the generalized Morrey spaces.

Theorem 3.3 Let 1 ≤ p < q < ∞, 0 < α <
Q
p , and 1

q = 1
p − α

Q . Let also Tα be a sublinear
operator satisfying condition (2.3), bounded from L p(G) to Lq(G) for p > 1, and bounded
from L1(G) to W Lq(G) for p = 1.

Then, for 1 < p <
Q
α

the inequality

‖Tα f ‖Lq (B(x,r)) ≤ C r
Q
q

∫ ∞

2c0r
‖ f ‖L p(B(x,t)) t−

Q
q −1 dt

holds for any ball B(x, r) and for all f ∈ L loc
p (G), where C does not depend on f , x and

r > 0.
Moreover, for p = 1 the inequality

‖Tα f ‖W Lq (B(x,r)) ≤ C r
Q
q

∫ ∞

2c0r
‖ f ‖L1(B(x,t)) t−

Q
q −1 dt, (3.7)

holds for any ball B(x, r) and for all f ∈ L loc
1 (G), where C does not depend on f , x and

r > 0.

Proof Let 1 < p < q < ∞, 0 < α <
Q
p and 1

q = 1
p − α

Q . For arbitrary x ∈ G, set
B = B(x, r), 2c0B ≡ B(x, 2c0r). We represent f as

f = f1 + f2, f1(y) = f (y)χ2c0B(y), f2(y) = f (y)χ�
(2c0B)

(y), r > 0,

and have

‖Tα f ‖Lq (B) ≤ ‖Tα f1‖Lq (B) + ‖Tα f2‖Lq (B).

Since f1 ∈ L p(G), Tα f1 ∈ Lq(G) and from the boundedness of Tα from L p(G) to Lq(G)

(see Lemma 3.2) it follows that:

‖Tα f1‖Lq (B) ≤ ‖Tα f1‖Lq (G) ≤ C‖ f1‖L p(G) = C‖ f ‖L p(2c0B),

where constant C > 0 is independent of f .

It is clear that z ∈ B, y ∈ �
(2c0B) implies 1

2c0
‖x ◦ y−1‖ ≤ ‖z ◦ y−1‖ ≤ 3c0

2 ‖x ◦ y−1‖.
We get

|Tα f2(z)| �
∫

�
(2c0B)

| f (y)|
‖x ◦ y−1‖Q−α

dy.

By Fubini’s theorem we have
∫

�
(2c0B)

| f (y)|
‖x ◦ y−1‖Q−α

dy ≈

∫

�
(2c0B)

| f (y)|
( ∫ ∞

‖x◦y−1‖
dt

t Q+1−α

)
dy

≈

∫ ∞

2c0r

( ∫

2c0r≤‖x◦y−1‖<t
| f (y)|dy

) dt

t Q+1−α

≤
∫ ∞

2c0r

( ∫

B(x,t)
| f (y)|dy

) dt

t Q+1−α
.

123



   69 Page 14 of 23 V.S. Guliyev

By applying Hölder’s inequality, we get

|Tα f2(x)| �
∫ ∞

2c0r
‖ f ‖L1(B(x0,t)) tα−Q−1dt

�
∫ ∞

2c0r
‖ f ‖L p(B(x,t)) ‖1‖L p′ (B(x,t))

dt

t Q+1−α

�
∫ ∞

2c0r
‖ f ‖L p(B(x,t)) t−

Q
q −1 dt .

(3.8)

Moreover, for all p ∈ [1,∞) the inequality

‖Tα f2‖Lq (B) � r
Q
q

∫ ∞

2c0r
‖ f ‖L p(B(x,t)) t−

Q
q −1 dt (3.9)

is valid. Thus

‖Tα f ‖Lq (B) � ‖ f ‖L p(2c0B) + r
Q
q

∫ ∞

2c0r
‖ f ‖L p(B(x,t)) t−

Q
q −1 dt .

On the other hand,

‖ f ‖L p(2c0B) ≈ r
Q
q ‖ f ‖L p(2c0B)

∫ ∞

2c0r
t−

Q
q −1 dt

� r
Q
q

∫ ∞

2c0r
‖ f ‖L p(B(x,t)) t−

Q
q −1 dt . (3.10)

Thus

‖Tα f ‖Lq (B) � r
Q
q

∫ ∞

2c0r
‖ f ‖L p(B(x,t)) t−

Q
q −1 dt .

Let p = 1. From the weak (1, q) boundedness of Tα (see Lemma 3.2) and (3.10) it follows
that

‖Tα f1‖W Lq (B) ≤ ‖T f1‖W Lq (G) � ‖ f1‖L1(G) = ‖ f ‖L1(2c0B)

≈ r
Q
q ‖ f ‖L1(2c0B)

∫ ∞

2c0r
t−

Q
q −1 dt

� r
Q
q

∫ ∞

2c0r
‖ f ‖L1(B(x,t)) t−

Q
q −1 dt .

(3.11)

By (3.9) and (3.11) we get the inequality (3.7). ��
Theorem 3.4 Let 1 ≤ p < q < ∞, 0 < α <

Q
p , 1

q = 1
p − α

Q , and ϕ1 ∈ �p, ϕ2 ∈ �q satisfy
the condition

∫ ∞

r

ess inf t<s<∞ ϕ1(x, s)s
Q
p

t
Q
q

dt

t
≤ C ϕ2(x, r), (3.12)

where C does not depend on x and r. Let Tα be a sublinear operator satisfying condition
(2.3) with α ∈ (0, Q), bounded from L p(G) to Lq(G) for p > 1, and bounded from L1(G)

to W Lq(G) for p = 1. Then the operator Tα is bounded from Mp,ϕ1(G) to Mq,ϕ2(G) for
p > 1 and from M1,ϕ1(G) to W Mq,ϕ2(G) for p = 1. Moreover, for p > 1

‖Tα f ‖Mq,ϕ2 (G) � ‖ f ‖Mp,ϕ1 (G),

and for p = 1
‖Tα f ‖W Mq,ϕ2 (G) � ‖ f ‖M1,ϕ1 (G).
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Proof By condition (3.12) and Theorems 2.1, 3.3 with v2(r) = ϕ2(x, r)−1, v1(r) =
ϕ1(x, r)−1r− Q

q , g(r) = ‖ f ‖L p(B(x,r)) and w(r) = r− Q
q −1 we have for p > 1

‖Tα f ‖Mq,ϕ2 (G) � sup
x∈G, r>0

ϕ2(x, r)−1
∫ ∞

r
‖ f ‖L p(B(x,t)) |B(x, t)|− 1

q
dt

t

� sup
x∈G,r>0

ϕ1(x, r)−1|B(x, r)|− 1
p ‖ f ‖L p(B(x,r)) = ‖ f ‖Mp,ϕ1 (G)

and for p = 1

‖Tα f ‖W Mq,ϕ2 (G) � sup
x∈G, r>0

ϕ2(x, r)−1
∫ ∞

r
‖ f ‖L p(B(x,t)) |B(x, t)|− 1

q
dt

t

= sup
x∈G,r>0

ϕ1(x, r)−1|B(x, r)|−1 ‖ f ‖L1(B(x,r)) = ‖ f ‖M1,ϕ1 (G).

��
Corollary 3.6 [18] Let 1 ≤ p < q < ∞, 0 < α <

Q
p , 1

q = 1
p − α

Q and ϕ1 ∈ �p, ϕ2 ∈ �q

satisfy condition (3.12). Then the fractional maximal operator Mα and the fractional integral
operator Iα are bounded from Mp,ϕ1(G) to Mq,ϕ2(G) for p > 1 and from M1,ϕ1(G) to
W Mq,ϕ2(G) for p = 1.

If in Theorem 3.4 take ϕ1(r) = ϕ(r) ∈ Gp , ϕ2(r) = rαϕ(r), then we get the following
new corollary.

Corollary 3.7 Let 1 ≤ p < q < ∞, 0 < α <
Q
p , 1

q = 1
p − α

Q , and ϕ ∈ Gp satisfy the
condition

∫ ∞

r
tα−1ϕ(t) dt ≤ Crα ϕ(r), (3.13)

where C does not depend on r. Let Tα be a sublinear operator satisfying condition (2.3) with
α ∈ (0, Q), bounded from L p(G) to Lq(G) for p > 1, and bounded from L1(G) to W Lq(G)

for p = 1. Then the operator Tα is bounded from Mp,ϕ(G) to Mq,rα ϕ(r)(G) for p > 1 and
from M1,ϕ(G) to W Mq,rα ϕ(r)(G) for p = 1.

Corollary 3.8 Let 1 ≤ p < q < ∞, 0 < α <
Q
p , 1

q = 1
p − α

Q , and ϕ ∈ Gp satisfy the
condition (3.13). Then the operators Mα and Iα are bounded from Mp,ϕ(G) to Mq,rα ϕ(r)(G)

for p > 1 and from M1,ϕ(G) to W Mq,rα ϕ(r)(G) for p = 1.

For ϕ1(x, r) = ϕ2(x, r) ≡ |B(x, r)| λ−1
p , from Theorem 3.4 we get the following new

result.

Corollary 3.9 Let 1 ≤ p < q < ∞, 0 < α <
Q
p , 1

q = 1
p − α

Q and 0 < λ <
p
q . Let also

Tα be a sublinear operator satisfying condition (2.3) with α ∈ (0, Q) bounded from L p(G)

to Lq(G) for p > 1, and from L1(G) to W Lq(G). Then the operator Tα is bounded from
L p,λ(G) to Lq,λq/p(G) for p > 1 and from L1,λ(G) to W Lq,λq(G) for p = 1.

The following corollary for the operator Iα was proved in [33].

Corollary 3.10 Let 1 ≤ p < q < ∞, 0 < α <
Q
p , 1

q = 1
p − α

Q and 0 < λ <
p
q . Then the

operators Mα and Iα are bounded from L p,λ(G) to Lq,λq/p(G) for p > 1 and from L1,λ(G)

to W Lq,λq(G) for p = 1.
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4 Interpolation inequalities

We recall a statement in [44]:

Lemma 4.1 Let K ∈ C(G\{0}) be homogeneous of degree α (α ∈ R) with respect to the
dilations (δλ)λ>0, then there exists a constant c > 0 such that

|K (z)| ≤ c‖z‖α,

where c = sup
�N

|K (z)|, �N denotes the unit sphere of G.

Observe that if the integral kernel K (·) is homogeneous of degrees −Q, then

T f (x) = V .P.

∫

G

K (x ◦ y−1) f (y)dy

is obviously a Calderón–Zygmund operator.
Given two balls Br1 , Br2 and a function φ ∈ C∞

0 (G), let us write Br1 ≺ φ ≺ Br2 to mean
that 0 ≤ φ(x) ≤ 1, φ(x) ≡ 1 on Br1 and suppφ ⊆ Br2 . Now we show several interpolation
inequalities in generalized Sobolev–Morrey spaces on G.

Lemma 4.2 Let 1 < p < ∞ and ϕ ∈ �p satisfy the condition (1.2). Then there exists a
constant c > 0 such that for any ε > 0 and any test function u, the following inequality holds

‖Du‖Mp,ϕ(G) � ε ‖D2u‖Mp,ϕ(G) + 1

ε
‖u‖Mp,ϕ(G).

Proof From Lemma 2.1, we have

Xi u(x) =
∫

G

Xi(x ◦ y−1)Lu(y)dy =
∫

G

i (x ◦ y−1)Lu(y)dy.

Let φ be a cutoff function with B1/2(0) ≺ φ ≺ B1(0), and split i as

i = φi + (1 − φ)i = K0 + K∞,

where K0 and K∞ are all homogeneous of degrees 1 − Q, then

Xi u(x) =
∫

{y∈G:‖x◦y−1‖<1}
K0(x ◦ y−1)Lu(y)dy

+
∫

{y∈G:‖x◦y−1‖≥1/2}
K∞(x ◦ y−1)Lu(y)dy := I + I I . (4.1)

In terms of Lemma 4.1 (see [33, pp. 1332]),

|I | ≤
∫

{y∈G:‖x◦y−1‖<1}
|K0(x ◦ y−1)||Lu(y)|dy ≤ C MLu(x), (4.2)

where C does not depend on x .
Using Corollary 3.3, we infer that

‖I‖Mp,ϕ (G) � ‖MLu‖Mp,ϕ(G) � ‖Lu‖Mp,ϕ (G) � ‖D2u‖Mp,ϕ (G). (4.3)

In terms of Lemma 4.1 (see, [33, pp. 1332]),

|I I | =
∣∣∣
∫

{y∈G:‖x◦y−1‖≥1/2}
K̃∞(x−1 ◦ y)Lu(y)dy

∣∣∣ ≤ C Mu(x), (4.4)
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where C does not depend on x .
It follows by Lemma 3.5 that

‖I I‖Mp,ϕ (G) � ‖Mu‖Mp,ϕ(G) ≤ c‖u‖Mp,ϕ(G). (4.5)

Summing (4.3) and (4.5), we obtain

‖Du‖Mp,ϕ (G) � ‖D2u‖Mp,ϕ (G) + ‖u‖Mp,ϕ (G).

A dilation argument leads to

ε‖Du‖Mp,ϕ(G) � ε2‖D2u‖Mp,ϕ (G) + ‖u‖Mp,ϕ (G),

and the proof of the lemma is concluded. ��
In the case of Euclidean space, the interpolation result on higher order derivatives can

be deduced by the induction. But in our context the interpolation lemma on higher order
derivative of vector fields cannot be deduced simply from that on lower order derivative by
the induction. Now we need to use the representation formula of higher order derivative on
homogeneous groups to arrive at our aim.

Lemma 4.3 (See [7]) Let Q > 4, for every integer k ≥ 2 and any couple of left invariant
differential monomials P2k−1 and P2k−2, homogeneous of degrees 2k − 1 and 2k − 2,
respectively, we can determine two kernels K (1), K (2) ∈ C∞(G\{0}) which are homogeneous
of degrees 1 − Q and 2 − Q, respectively, such that for any test function u,

P2k−1u(x) =
(
(Lku) ∗ K (1)

)
(x),

P2k−2u(x) =
(
(Lku) ∗ K (2)

)
(x),

where Lk = LL . . .L︸ ︷︷ ︸
k times

.

Lemma 4.4 Let 1 < p < ∞ and ϕ ∈ �p satisfy the condition (1.2). If k ≥ 2 is an integer,
then there exists a constant c = c(Q, k) > 0 such that for every ε > 0 and any test function
u,

‖D2k−1u‖Mp,ϕ(G) ≤ ε‖D2ku‖Mp,ϕ (G) + c

ε2k−1 ‖u‖Mp,ϕ(G).

Proof Suppose that φ is a cutoff function with B1/2(0) ≺ φ ≺ B1(0). By Lemma 4.3, we
have

P2k−1u(x) =
(
(Lku) ∗ K (1)

)
(x).

Now let us split K (1) in the following way

K (1) = φK (1) + (1 − φ)K (1) = K (1)
0 + K (1)∞ ,

where K (1)
0 and K (1)∞ are homogeneous of degrees 1 − Q. Thus

P2k−1u(x) =
∫

{y∈G:‖x◦y−1‖<1}
K (1)
0 (x ◦ y−1)Lku(y)dy

+
∫

{y∈G:‖x◦y−1‖≥1/2}
K (1)∞ (x ◦ y−1)Lku(y)dy

= I1(x) + I2(x). (4.6)
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It is easy to see with (4.2) that

|I1(x)| ≤
∫

{y∈G:‖x◦y−1‖<1}
|K (1)

0 (x ◦ y−1)| |Lku(y)|dy � MLku(x).

From Corollary 3.3

‖I1(·)‖Mp,ϕ (G) � ‖MLku‖Mp,ϕ (G) � ‖Lku‖Mp,ϕ (G) � ‖D2ku‖Mp,ϕ(G). (4.7)

We have by using Lemma 4.1 and the way in (4.4) (see [33, pp. 1333]),

|I2(x)| �
∞∑

i=0

∫

{y∈G:2i−1≤‖x◦y−1‖<2i }
|u(y)|dy

‖x ◦ y−1‖Q+2k−1 � Mu(x).

Applying Lemma 3.5,

‖I2(·)‖Mp,ϕ (G) � ‖Mu‖Mp,ϕ(G) � ‖u‖Mp,ϕ(G). (4.8)

Combining (4.7) and (4.8), we have from (4.6) that

‖D2k−1u‖Mp,ϕ (G) � ‖D2ku‖Mp,ϕ(G) + ‖u‖Mp,ϕ(G).

A dilation argument shows

ε2k−1‖D2k−1u‖Mp,ϕ (G) � ε2k‖D2ku‖Mp,ϕ(G) + ‖u‖Mp,ϕ(G),

and this ends the proof. ��
Lemma 4.5 Let 1 < p < ∞ and ϕ ∈ �p satisfy the condition (1.2). If k ≥ 2 is an integer,
there exists a constant c = c(Q, k) > 0 such that for every ε > 0 and any test function u,

‖D2k−2u‖Mp,ϕ (G) ≤ ε2‖D2ku‖Mp,ϕ(G) + c

ε2k−2 ‖u‖Mp,ϕ (G).

Proof Let φ be a cutoff function with B1/2(0) ≺ φ ≺ B1(0). By Lemma 4.3, we see

P2k−2u(x) =
(
(Lku) ∗ K (2)

)
(x).

Split K (2) as
K (2) = φK (1) + (1 − φ)K (2) = K (2)

0 + K (2)∞ ,

where K (2)
0 and K (2)∞ are homogeneous of degrees 2 − Q, then

P2k−2u(x) =
∫

{y∈G:‖x◦y−1‖<1}
K (2)
0 (x ◦ y−1)Lku(y)dy

+
∫

{y∈G:‖x◦y−1‖≥1/2}
K (2)∞ (x ◦ y−1)Lku(y)dy

= J1(x) + J2(x).

Analogously to the proof of Lemma 4.4, it yields

‖J1(·)‖Mp,ϕ (G) � ‖MLku‖Mp,ϕ (G) � ‖Lku‖Mp,ϕ (G) � ‖D2ku‖Mp,ϕ(G),

‖J2(·)‖Mp,ϕ (G) � ‖Mu‖Mp,ϕ(G) � ‖u‖Mp,ϕ(G).

Therefore
‖D2k−2u‖Mp,ϕ (G) � ‖D2ku‖Mp,ϕ(G) + ‖u‖Mp,ϕ(G).
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A dilation argument deduces

ε2k−2‖D2k−2u‖Mp,ϕ(G) � ε2k‖D2ku‖Mp,ϕ (G) + ‖u‖Mp,ϕ (G).

This completes the proof. ��

5 Proof of themain theorems

The following result is known, see [7,21].

Lemma 5.1 For some integer h with 0 < h < Q, assume that Kh ∈ C∞(G\{0}) is homoge-
neous of degree h − Q, f is an integrable function and Th is defined by

Th f = f ∗ Kh,

Ph is a left invariant homogeneous differential operator of degree h, then

Ph Th f = V .P. ( f ∗ Ph Kh) + c f ,

for some constant c depending on Kh and Ph.

Proof of Theorem 1.1. It holds from Lemma 2.1 that

Xi X j u(x) = V .P.

∫

G

i j (x ◦ y−1)Lu(y)dy + ci j Lu(x),

and using Corollary 3.3,

‖Xi X j u‖Mp,ϕ (G) �
∥∥∥

∫

G

i j (· ◦ y−1)Lu(y)dy
∥∥∥

Mp,ϕ (G)
+ ‖Lu‖Mp,ϕ (G)

� ‖Lu‖Mp,ϕ(G). (5.1)

Due to a0X0u = Lu −
m∑

i, j=1
ai j Xi X j , it follows that

‖X0u‖Mp,ϕ (G) � ‖Lu‖Mp,ϕ(G). (5.2)

Then by (5.1) and (5.2)
‖D2u‖Mp,ϕ(G) � ‖Lu‖Mp,ϕ(G). (5.3)

From Lemma 4.2, we have

‖Du‖Mp,ϕ (G) � ε ‖D2u‖Mp,ϕ (G) + 1

ε
‖u‖Mp,ϕ(G)

� ε ‖Lu‖Mp,ϕ (G) + 1

ε
‖u‖Mp,ϕ(G). (5.4)

Combining (5.3) and (5.4)

‖u‖S2p,ϕ(G) = ‖u‖Mp,ϕ(G) + ‖Du‖Mp,ϕ(G) + ‖D2u‖Mp,ϕ (G)

� ‖Lu‖Mp,ϕ (G) + ‖u‖Mp,ϕ(G),

the proof is ended. ��
Proof of Theorem 1.2. In order to prove the conclusion, we need to establish the following

inequality: if k is a positive integer, there exists a constant c > 0 such that for every test
function u,

‖D2ku‖Mp,ϕ(G) ≤ c‖D2k−2Lu‖Mp,ϕ (G). (5.5)
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When k = 1, by (5.3),
‖D2u‖Mp,ϕ(G) � ‖Lu‖Mp,ϕ(G). (5.6)

When k ≥ 2, since X0 cannot be expressed as the composition of two vector field with
homogeneity of degree 1, it follows that Dk cannot be obtained from D(Dk−1) directly.
But Pk can be written as X0P2k−2 or Xi P2k−1 (i = 1, . . . , m), denoted by P2P2k−2 and
P P2k−1, respectively. Furthermore, it holds from Lemma 4.3 that

P2k−1u(x) =
(
(Lku) ∗ K (1)

)
(x),

P2k−2u(x) =
(
(Lku) ∗ K (2)

)
(x),

where K (1), K (2) are homogeneous of degrees 1 − Q and 2 − Q, respectively.
In the case of P2k = P2P2k−2, we have from Lemma 5.1,

P2ku(x) = V .P.

∫

G

P2K (2)(x ◦ y−1)(Lku)(y)dy + ci j (Lku)(x),

where P2K (2) is homogeneous of degree −Q. Applying Corollary 3.3,

‖P2ku‖Mp,ϕ (G) �
∥∥∥

∫

G

P2K (2)(· ◦ y−1)(Lku)(y)dy
∥∥∥

Mp,ϕ (G)
+ ‖Lku‖Mp,ϕ(G)

� ‖Lku‖Mp,ϕ (G) � ‖D2k−2Lu‖Mp,ϕ (G).

In the case of P2k = P P2k−1, we obtain by using Lemma 5.1,

P2ku(x) = V .P.

∫

G

P K (1)(x ◦ y−1)(Lku)(y)dy + ci j (Lku)(x),

where P K (1) is homogeneous of degree −Q. By virtue of Corollary 3.3,

‖P2ku‖Mp,ϕ(G) �
∥∥∥

∫

G

P K (1)(· ◦ y−1)(Lku)(y)dy
∥∥∥

Mp,ϕ (G)
+ ‖Lku‖Mp,ϕ(G)

� ‖Lku‖Mp,ϕ(G) � ‖D2k−2Lu‖Mp,ϕ(G).

As a consequence
‖D2ku‖Mp,ϕ(G) � ‖D2k−2Lu‖Mp,ϕ (G),

and (5.5) is proved.
Then

‖D2k+2u‖Mp,ϕ (G) � ‖D2kLu‖Mp,ϕ (G). (5.7)

Lemma 4.4 implies that

‖D2k+1u‖Mp,ϕ (G) � ε ‖D2k+2u‖Mp,ϕ(G) + 1

ε2k+1 ‖u‖Mp,ϕ(G)

� ε‖D2kLu‖Mp,ϕ(G) + 1

ε2k+1 ‖u‖Mp,ϕ(G). (5.8)

Combining (5.7) and (5.8), we have

‖u‖S2k+2
p,ϕ (G)

= ‖u‖Mp,ϕ(G) + ‖D2k+1u‖Mp,ϕ(G) + ‖D2k+2u‖Mp,ϕ(G)

� ‖D2kLu‖Mp,ϕ (G) + ‖u‖Mp,ϕ(G)

= ‖Lu‖S2k
p,ϕ(G) + ‖u‖Mp,ϕ(G).
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Theorem 1.2 is proved.
Proof of Theorem 1.3. From Lemma 2.1, we get

Xi u(x) =
∫

G

i (x ◦ y−1)Lu(y) dy.

Since the function i (·) is homogeneous of degree 1 − Q, it follows by Lemma 4.1 that

|Xi u(x)| �
∫

G

|Lu(y)|
‖x ◦ y−1‖Q−1 dy,

and we finish the proof by applying Corollary 3.6 with α = 1.

‖Xi u‖Mq,ϕ2 (G) �
∥
∥
∥

∫

G

|Lu(y)|
‖ · ◦ y−1‖Q−1 dy

∥
∥
∥

Mq,ϕ2 (G)

� ‖Lu‖Mp,ϕ1 (G), i = 1, 2, . . . , m.
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