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Abstract
Let G = (RN , 0, SA) be a homogeneous group, Q is the homogeneous dimension of G,
Xo, X1, ..., X,y be left invariant real vector fields on G and satisfy Hormander’s rank con-
dition on RY. Assume that X;, ..., X, (m < N — 1) are homogeneous of degree one and

Xo is homogeneous of degree two with respect to the family of dilations (SA) ;0 Consider
the following hypoelliptic operator with drift on G

m
L= Z a;j X;X; + apXo,
ij=1

where (a;;) is am x m constant matrix satisfying the elliptic condition in R and a¢ # 0. In
this paper, for this class of operators, we obtain the generalized Sobolev—Morrey estimates
by establishing boundedness of a large class of sublinear operators Ty, o € [0, Q) generated
by Calder6n—Zygmund operators (¢ = 0) and generated by fractional integral operator
(¢ > 0) on generalized Morrey spaces and proving interpolation results on generalized
Sobolev—Morrey spaces on G. The sublinear operators under consideration contain integral
operators of harmonic analysis such as Hardy—Littlewood and fractional maximal operators,
Calder6n—Zygmund operators, fractional integral operators on homogeneous groups, etc.
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1 Introduction and the main results

Let G be a homogeneous group on RN and X, Xi,..., X, (m < N) be left invariant
real vector fields on G. Assume that X1, ..., X,, are homogeneous of degree one and Xy is
homogeneous of degree two satisfying Hormander’s condition

rank L(Xo, X1,..., Xu)(x) =N, x €G,

where L(Xo, X1, ..., X;;) denotes the Lie algebra generated by Xo, X1, ..., X;,. In this
paper we are interested in the following hypoelliptic operator with drift

m
L= Z a;jX;iX;j +aoXo, (L.1)
ij=1

where ag # 0, (a;;)}" =1 is a constant coefficients matrix satisfying that for some p > 0,

m
wEP < ) ayEig; < plEl’, £ eR™

i,j=1

Since Hormander’s classic work [32] for the operators sum of squares was published,
the regularity of hypoelliptic operators structured on Hérmander’s vector fields has attracted
extensive attention [3,8,9,35]. The relative of properties of weak generalized solutions to
elliptic equations constructed by Hormander’s vector fields was studied in [5,6]. Folland
[21] proved that any Hormander type operator like (1.1) has a homogeneous fundamental
solution. For the further properties of the fundamental solutions, see Bramanti and Brandolini
[7]. The authors of [7,31,34,44] considered a priori estimates for the operator £. The operator

n
L contains many particular cases. When Xo = > b;jxi0x; — 0, Xi = 9,0 = 1,2, ..., m,
i,j=1
L is a Kolmogorov—Fokker—Planck ultraparabolic operator of the kind

m n
2
Liu = E aijaxix]_u-f— E bijxiaxju—a,u,
i,j=1 i,j=1

where (x,t) € R"*1, (aij)?jjzl is a positive definite matrix, (bij):'l,j:1 is a constant coeffi-
cients matrix with a suitable upper triangular structure. It is clear that £ is a heat operator,
when m = n, (bij)?,j=1 = (0);’,1.:1. For more details see [36,37]. The operator £ arises in
many research fields, for instance, stochastic processes and kinetic models [13,14,16], math-
ematical finance theory [2,36,45] etc. Since £1 owns a homogeneous fundamental solution
with good properties, many authors still pay attention to it up to now [10,46,48]. In addition,
other examples of (1.1) can see in [7,22].

Morrey spaces and their properties play an important role in the study of local behavior of
solutions to elliptic partial differential equations, refer to [40,47]. In [1,15] the authors showed
the boundedness in Morrey spaces for some important operators in harmonic analysis such as
Hardy-Littlewood operators, Calderén—Zygmund singular integral operators and fractional
integral operators. Moreover, various Morrey spaces are defined in the process of study. In
[24,39,43] the authors introduced and studied the boundedness of the classical operators in
generalized Morrey spaces M, ,(IR") (see, also [25,26,29,50]) and etc.

In this paper motivated by these articles, we will establish the boundedness of sublinear
integral operators on generalized Morrey spaces in the framework of homogeneous groups.
The sublinear operators under consideration contain integral operators of harmonic analysis
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such as Hardy-Littlewood and fractional maximal operators, Calderén—Zygmund operators,
potential operators on homogeneous groups, etc. Homogeneous groups include the Euclidean
space, the Heisenberg group, the Carnot group, see [4,12,22,52]. Furthermore, applications to
generalized Sobolev—Morrey estimates for hypoelliptic operators with drift on homogeneous
groups are given. Also, generalized Morrey estimates for the sublinear operators generated
by fractional integral operators on the homogeneous group and an application are obtained.
Recall that the local Morrey-type space was introduced and proved the boundedness in
this spaces of the fractional integral operator and singular integral operators defined on
homogeneous Lie groups by author in [24], see also [27,30].

Let us state the following three main results of the paper.

Theorem 1.1 (Generalized Sobolev—Morrey estimate). Let 1 < p < oo and ¢ € 2, satisfy
the condition

) - =Colx,n), (1.2)

tr

Q
/00 ess inf; s oo @(x,8)s P dt
-

where C does not depend on x and r. Let also u € Slzjq(p(G) N S},’O(G). Then there exists a
constant C > 0 such that

sz e = C(1£ulmy p + Il @), (1.3)

where

m m

lullsy @) = Nl p@ + D I Xiullm, @ + D I1XiXjullm, @ + 1 Xoullm, . ©)-
i=1 i,j=1

Remark 1.1 Denote by G, the set of all decreasing functions ¢ : (0, 00) — (0, c0) such

0
that r € (0,00) — rre(r) € (0,00) is almost increasing, here Q is the homogeneous
dimension of G. Then for ¢ € G, the condition (1.2) stays the following form

o0 d
/ w(t)Tt < Co(r). (1.4)

where C does not depend on r. For the nontriviality of generalized Morrey spaces M, ,(G)
we assumed in Theorem 1.1 and in the sequel that ¢ € €2, see Lemma 2.2 and Remark 2.3.
Note that the condition (1.2) is weaker than (1.4). Indeed, if (1.4) holds, then

Qo
® essinf;oyo00 @(s)s? dt o0 dt
o — < P(t) —.
. 2 t . t

The following example shows that there exist functions satisfying (1.2) but not (1.4).

Example 1.1 For 8 € (0, 1—]) consider the weight function

go(r):}"ﬂi? sm(max{l,z})‘ -
.
. 4 . 3 2
Itr € (0, w) theness infy < <00 ¢(£)¢ » = Owhileforr € (7, 00), ess infr<; <00 (£ 7 =
rP sin 1. Then
‘ 0
o gis{g;g p&)¢r 0, re(0,m)
e 5= Vo <Co(r).
i e r’" 7 sinl, r e (7, 00)
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The function ¢ does not satisfy the condition (1.4).

Corollary 1.1 Let1 < p < coand ¢ € G, satisfy the condition (1.4). Let alsou € S;,w(G) N
S;’O(G). Then the inequality (1.3) is valid.

A0
If in Theorem 1.1 take p(r) =r 7 with0 < A < Q, then M, ,(G) = L ;,(G) is the
classical Morrey space and we get the following corollary, which were proved in [33].

Corollary 1.2 [33] Let | < p < 00, and 0 < k < 1. Let also u € S2, (G) N S,°(G). Then
there exists a constant C > 0 such that

el @) = (12l L, + Nl @)-

where

m m
lulls2 @ = Il @ + D WXiull, @ + Y IXiXjullL, @ + 1 XoullL, ;@)
i=1 i,j=1
Theorem 1.2 (Higher order generalized Sobolev—Morrey estimate). Let1 < p < 00, ¢ € Q)

satisfy the condition (1.2) and k is a positive integer. Let also u € SIZW(G) N S},’O(G). Then
there exists a constant C > 0 such that

lullpia ey = C(I1€uls31, @) + Nllug @) ). (1.5)
_ N2k h
where ullsz @) = Yo 1D ullu, , @),

IIDhMIIMp,¢<G) = Z 1Xji.. Xjulm,, )

where X ;i ... X jj is homogeneous of degree h (let us note that X is homogeneous of degree
two while the remaining X1, . .., X,, are homogeneous of degree one).

Corollary 1.3 Let 1 < p < oo, k is a positive integer and ¢ € G, satisfy the condition (1.4).
Let alsou € Slz,,(p(G) N S},’O(G). Then the inequality (1.5) is valid.

Corollary 1.4 [33]let 1 < p < 00, 0 < k < 1 and k is a positive integer. Let also u €
S%’ ,GNS },’O(G). Then there exists a constant C > 0 such that

Il 212 ) < C(I1€ullsz, @ + Mz, .6 ).

To inspect two theorems, we first prove the boundedness of sublinear operators generated
by Calder6n—Zygmund operators Ty in generalized Morrey space on G by applying the
representation formulas of functions. These formulas depend on the fundamental solution
of L. Next generalized Sobolev—Morrey interpolations on the first order derivatives and
higher order derivatives of vector fields are derived. Then based on these results, we obtain
generalized Sobolev—Morrey estimates for £. Instead, we shall apply representation formulas
of higher order derivatives [7] to prove interpolations desired.

Theorem 1.3 (Generalized Morrey estimate). Let 1 < p < g < oo, é = % - é, and
@1 € Qp, p2 € Qq satisfy the condition
0
* ess inf x,s)s? dt
/ e IR D ey, (1.6)
r [?
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where C does not depend on x and r. Then there exists a constant C > 0 such that for every
Lu € M, 4 (G), we have

I Xiullm,,, ) = Clllullm,, ), i=12,....m.

If in Theorem 1.3 take @1 (r) = @(r) € Gp, p2(r) = ro(r), then we get the following new
corollary.

Corollary 1.5 Let1 < p < g < o0, + =

7 % — é, and ¢ € G, satisfy the condition

/oo p(t)dt < Cro(r), (1.7)

where C does not depend on r. Then there exists a constant C > 0 such that for every
Lu € M, ,(G), we have

1Xiullg,p @ < C I Cullagyp@ys i =1,2,....m.

Corollary 1.6 [33]1If1 < p < o0, 1/g = 1/p —1/0Q, and 0 < A < p/q, there exists a
constant ¢ > 0 such that for every Lu € L, ;(G), we have

IXiullz, .y < ClILullL,, @) i=1.2....m.

The proof uses the extension of generalized Morrey estimates for the sublinear operators
generated by fractional integral operators 7,, 0 < o < Q in the Euclidean space to the
homogeneous group and application to L.

Sobolev—Morrey spaces arose in the study of elliptic differential equations. Campanato
considered Sobolev—Morrey spaces in [11]. More is investigated on Sobolev—Morrey spaces
[19,20,33,44,48,49]. The embedding relation can be found in [41,42].

It is mentioned that since the second and higher order derivatives of vector fields are
determined by Calderén—Zygmund operators rather than the fractional integral operators,
we cannot use the method here to generalize estimates in Theorem 1.3 to the generalized
Sobolev—Morrey estimates for L.

The plan of the paper is the following. In Sect. 2, we introduce some knowledge of
the homogeneous group G, the fundamental solution for £ and the generalized Morrey
spaces. Section 3 is devoted to the proof of boundedness for sublinear operators generated
by Calder6n—Zygmund operators Ty in generalized Morrey spaces. Generalized Morrey esti-
mates for sublinear operators generated by fractional integral operators Ty, 0 < o < Q are
given. In Sect. 4 the generalized Sobolev—Morrey interpolation inequalities on G are shown.
The main results are proved in Sect. 5.

By A < B we mean that A < C B with some positive constant C independent of appro-
priate quantities. If A < Band B < A, we write A ~ B and say that A and B are equivalent.

2 Preliminaries
We now recall some basic notions concerning homogeneous Lie groups. We refer to the

monograph [4] for a detailed treatment of the subject.
Given a pair of smooth mappings

[(x,y)—)xoy]:RNxRNr—)RN; [xr—>x_1]:]RNr—>]RN,

@ Springer



69 Page6of23 V.S. Guliyev

the space RY with these mappings forms a group, in which the identity is the origin. If there
exist 0 < w; < wy < --- < wy, such that the dilations

S (x1, ..., xn) = A xg, .. A xy), A>0

are group automorphisms, then the space RV with this structure is called a homogeneous
group, denoted by G.

Definition 2.1 A homogeneous norm || - || on G is defined in the following way: if for any
x € G, x #0, it holds
Ixll =p < 1817px] =1,

where | - | denotes the Euclidean norm; also, let ||0]| = O.
It is not difficult to verify that the homogeneous norm satisfies

1. ||§x|| = Allx|| for every x € G, A > 0;
2. there exists cp = ¢(G) > 1, such that for every x, y € G,

Ix~' < collxl and [lx oyl < co (lIx[l + Iy ] 2.1
In view of the above properties, it is natural to define the quasi distance d:
d(x,y) = xoy™|.

The ball with respect to d is defined by B(x,r) = B,(x) = {y € G : d(x,y) < r}. Note
that B(0, r) = §,B(0, 1), therefore

|B(x,r)| =rQ|B(O, D], xeG,r >0, 2.2)

where
O=w+- - +wy.

We will call that Q is the homogeneous dimension of G and always require Q > 4 in the
sequel. By (2.2) the doubling condition on G holds, that is

|B(x,2r)| <c|B(x,r)], xe€G, r>0,

where ¢ is some positive constant, and so (G, dx, d) is a space of homogeneous type.
Let B be a ball on G and AB (A > 0) denote the ball with the same center as B whose
radius is A times that of B.

Definition 2.2 Differential operators Y on G are said to be homogeneous of degree 8 (8 > 0),
if for every test function ¢,

Y(px)) =2 (Y)(8:0), 1> 0,x €G;
a function f is called homogeneous of degree «, if

F((&x) =2%f(x), 2>0,x€G.

Clearly, if Y is a homogeneous differential operator of degree 8 and f is a homogeneous
function of degree «, then Y f is homogeneous of degree o — .

Lemma 2.1 (See [7]) Let L be a left invariant homogeneous differential operator of degree
2 on G, then there is a unique fundamental solution T (-) such that for every test function u
and every x € G,
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(@) T() € CZ(G\{0});
(b) ['(-) is homogeneous of degree 2 — Q;
© u(x) = (LuxT)(x) = [T oy HLu(y)dy;
(d) Xijux) = [ XiT'(x oy~ Lu(y)dy.
Moreover, fori, j =1, ..., m, there exist constants c; ;j such that

Xi X ju(x) = V.P./ X: X;T(x oy Y Lu(y)dy + cij Lu(x).
G

Remark 2.1 If we set I'; = X;I", I'; ; = X; X;T", then it is obvious that I'; is homogeneous
of degree 1 — Q and I';; is homogeneous of degree — Q.

Several important integral operators are needed:

Definition 2.3 Forany f € Lll"C (G), the Hardy-Littlewood maximal operator on G is defined
by

1
Mf(x) =sup ———— |[f(»)ldy, ae. xeG.
r>0 |B(x,r)| B(x,r)

Definition 2.4 For any f € LllOC (G), we say that T is a Calderén—Zygmund operator on G if

Tf(x) = lim K(xoy ) f(y)dy=V.P. f K(xoy ) f(ydy,
e=0 J{yeG:|xoy~!|>¢) G

where K satisfies

c c
[K(x)| < W, IVK(x)| < Wa x#0

Definition 2.5 For any f € Lll"C (G), the fractional maximal operator M, and the fractional
integral operator I, on G are defined by

Mo f(x) = sup | BGx, )|+ /B( 1Oy 0w <o,

r>0
Iw‘(x):/#dy, 0<a<Q,
G lxoy 12«

respectively.

If @ = 0, then M = M) is the Hardy-Littlewood maximal operator.
Suppose that T, @ € [0, Q) represents a linear or a sublinear operator, which satisfies,
for any f € L1(R") with compact support and x ¢ suppf, the inequality

Lf O

ITuf) <c | —— —
“ G llx oy~1)2-«

dy, (2.3)
where ¢ is independent of f and x.

We point out that the condition (2.3) with o = 0 was first introduced by Soria and Weiss
in [51] in the case G = R". Condition (2.3) is satisfied by many interesting operators in
harmonic analysis, such as the Calderén—Zygmund operator, Carleson’s maximal operator,
Hardy-Littlewood maximal operators, fractional maximal operator, C. Fefferman’s singu-
lar multipliers, R. Fefferman’s singular integrals, Riesz potentials, Ricci—Stein’s oscillatory
singular integrals, Bochner-Riesz means and so on (see [17,38,51] for details).
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Note that, the maximal operator M, and the Calderon—Zygmund operator T satisfy the
condition (2.3) with « = 0, and the fractional maximal operator M,, and the fractional
integral operator [, satisfy the condition (2.3) with0 < o < Q.

Let0 <o < Q0,1 <p < % and f € L,(G). Then the integral I, f(x) converges
absolutely for almost every x € G, see [25, Theorem 3.2.1]. The Hardy-Littlewood—Sobolev
result states that (see [22,24], [25, Theorem 3.2.1]) the operator I, is bounded from L ,(G)
to Ly(G)ifandonlyif 1 < p < g <ooanda = Q/p — Q/q. Also I, is bounded from
Li(G)to WL;(G)ifandonlyif 1l <g <ocanda = Q — Q/q.

In the study of local properties of solutions to of partial differential equations, together
with weighted Lebesgue spaces, Morrey spaces L, ;(G) play an important role, see [23].
They were introduced by C. Morrey in 1938 [40]. The Morrey space in a Carnot group is
defined as follows: for 1 < p < 00,0 <A < Q, afunction f € L,(G)if f € Llp‘m(G)
and

_x
1AL, = suwp 7 PIfllL,Bw.r < o0
x€G, r>0
(If A =0,then L, o(G) = L,(G);if L = Q,then L, 9(G) = Loo(G);if L <Oori > Q,
then L, , (G) = ©, where O is the set of all functions equivalent to 0 on G.)
We also denote by WL, 5 (G) the weak Morrey space of all functions f € WLI;,’C (G) for
which

_i
Ifllwe, e =1 llwe,,@ = sup r ?Ifllwe,Be.r) < 00,
x€G, r>0

where WL ,(B(x, r)) denotes the weak L ,-space of measurable functions f for which
I lwL,Be.ry = supt lly € B, r) = [f )] > 47
>0

We find it convenient to define the generalized Morrey spaces in the form as follows.

Definition 2.6 Let 1 < p < oo and ¢(r) be a positive measurable function on (0, 0co). The
generalized Morrey space M, ,(G) is defined of all functions f € L{;’C (G) by the finite

norm
_Q
P

I fllm,, @) = sup I FllL,Be.r)-

xeG.r>0 (1)
Also the weak generalized Morrey space WM, ,(G) is defined of all functions f e Lg’" G)
by the finite norm
_Q
rp
I fllwm,, @) = sup 20 I FllwL,Be.r))-

xeG,r>0

-0
Remark2.2 (1) If o(r) =r 7 with0 < A < Q, then M, ,(G) = L, ;(G) is the classical
Morrey space and WM, ,(G) = WL ;(G) is the weak Morrey space.

_Q
(2) If o(r) = r 7, then M), ,(G) = L,(G) is the Lebesgue space and WM, ,(G) =
WL,(G) is the weak Lebesgue space.

Lemma 2.2 [18] Let ¢(r) be a positive measurable function on (0, 00).
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0 If
_Q
P
sup =00 forsomet >0 andforall x € G,
t<r<oo @(r)
then M), ,(G) = ©.
@) If

sup ¢(r)"! =00 forsomet >0 andforall x € G,
O<r<t

then M), ,(G) = ©.

Remark 2.3 [18] We denote by €2, the sets of all positive measurable functions ¢ on G x
(0, 00) such that for all r > 0,

_Q
r r
-1
sup H <00, and sup Hgo(r) H < 00,
xeG 1 @(r) Moo (t.00) xeG Loo(0.1)

respectively. In what follows, keeping in mind Lemma 2.2, we always assume that ¢ € €2,.

We use the following simplified notation later:

m
1Dullsg, ) = Y I Xittlla, )
i=1
m

ID*ullm, ) = Z 1XiXjulm,, @) + 11 Xoulm,,c)>
i=1

and generally,
1D ullpg, g = Y X ji - Xjittlla, )

where X j; ... X j; is homogeneous of degree k (let us note that X is homogeneous of degree
two while the remaining X1, ..., X, are homogeneous of degree one).

Definition 2.7 For p € [1, 0c0), a nonnegative integer k, the generalized Sobolev—Morrey
space Sf,y(p(G) consists of all M, ,(G) functions such that

Kk
h
lulls: @) = E D% ullm, )
h=0

is finite.
The space Sf,’(p(G) N S},’O(G) consists of all functions u € S;‘, G)n S},’O(G) with D"y e

M, ,(G), and is endowed by the same norm. Recall that § ;’O(G) is the closure of C§°(G)
with respect to the norm in § [1, (G).

We will use the following statement on the boundedness of the weighted Hardy operator

Hyg(t) = /00 gs)w(s)ds, 0<t < oo,
t

where w is a weight. The following theorem was proved in [28].

@ Springer



69 Page 10 0f 23 V.S. Guliyev

Theorem 2.1 [28] Let vy, vy and w be weights on (0, 00) and v (t) be bounded outside a
neighborhood of the origin. The inequality

sup va(r) Hyg(t) < C sup vy (1) g(r)

t>0 t>0

holds for some C > O for all non-negative and non-decreasing g on (0, co) if and only if

e w(s)ds
B :=supuvy(t) -
t>0 t SUPg_7 oo VI(T)

3 Sublinear operators on the spaces Mp, ,,(G)

The following is true for the homogeneous group space [4,22]. Let us note that the homoge-
neous group is a special case of homogeneous spaces, so we can state

Lemma 3.1 [4,22] Let 1 < p < oo. Then the maximal operator M and Calderon—-Zygmund
operator T are bounded on L, (G) for p > 1 and from L1(G) to WL, (G).

Lemma3.2 [422]Let]l < p<qg <00, 0<a< Qandl =1 _ 2 Then the fractional

integral operator Iy is bounded from L ,(G) to Ly (G) for p > 1 andfrom L1(G) to W L4 (G).

The following theorem is valid.

Theorem 3.1 Let 1 < p < oo and Ty be a sublinear operator satisfying condition (2.3) with
a = 0 bounded on L, (G) for p > 1, and bounded from L|(G) to W L1(G). Then, for p > 1
the inequality

o0

14 _9 4
1TofllL, B <Crvr / 1AL, Bao.nt »  dt
r

2co

holds for any ball B = B(xq, r) and forall f € Llp"C (G), where co > 1 is the constant from
the triangle inequality (2.1) and C does not depend on f, xg and r > 0.
Moreover, for p = 1 the inequality

oo

ITofllwe, ) < CVQ/ £l Byt~ 2" dt 3.D

2cor

holds for any ball B = B(xq, r) and forall f € LllOC (G), where C does not depend on f, xq
andr > 0.

Proof Let p € (1, 00). For arbitrary xo € G, set B = B(x, r) for the ball centered at xo and
of radius r, 2co B = B(xo, 2cor). We represent f as

fF=h+r O =FOxews®). L) =fDxe,, 50, >0,
and have

I1Tofllz, ) = I Tofille,) + 1 Tof2llL,B)-

Since fi € L,(G), Tofi € Lp(G) and from the boundedness of Ty in L,(G) (see
Lemma 3.1) it follows that:

1o fillL, 8 < I1Tofill,@) < ClfillL, @) = ClflL,@cB)

where constant C > 0 is independent of f.
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C . .
It’s clear that x € B, y € (2coB) implies 2—(1:0||x0 oyl < xoy ! < 22 xg oyl

We get
FASY)

@coB) IIxo 0 y7HIC

[To f2(x)| S ﬁ

By Fubini’s theorem we have

[f NI * dr
fﬂ 7_1Qdy ~ g [f I 041 dy
@eoB) lxo oy~ (2¢oB) llxooy =111

o dt
~ / / If(y)ldyﬁ
2cor J2cor<|lxgoy~!||<t t

</oo/ oy -2
< Wldy—-—.
2¢or J B(x0,1) 10+1

Applying Holder’s inequality, we get

o0
ITo o)) < / 11, By 1
2cor
- o0 dt
~ Iz Beo.y ITL, B0 7577
cor

[e3) _0_,
< 1AL, Beont ? dt.
r

2¢o

Moreover, for all p € [1, co) the inequality

o [ _Q_
1Tof2llL,) S 7 I fllL,Bao.nt 7 dt
2cor
is valid. Thus
o [ _Q_
ITofllL, ) S NflL,@cB) + 77 I flL, Byt » dt.
2cor
On the other hand,
2 © 0y
I fllz,@coB) =17 Il fllL,@coB) rorodt
2cor
2 [ _2
<rr Iz, Bxomt 7 dt.
2cor
Thus
2 [ _2_4
1ToflL, ) S 17 IfllL,Beo.nt 7 dt.
2cor

(3.2)

(3.3)

34

Let p = 1. From the weak (1, 1) boundedness of 7y (see Lemma 3.1) and (3.4) it follows

that:

7o fillwe, ) < 1Tofillwey) S I filleie = 1 fllLi2es)

e 1
ernfuL,(sz)/ 014y
)

2co
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o0
<r? / I £y Boo,y ¢~ 2 . (3.5
2cor
Then by (3.3) and (3.5) we get the inequality (3.1). O

Theorem 3.2 Let1 < p < oo and ¢y, 92 € Q) satisfy the condition
]

oo ess inf @1 (x, s) s 7 dt

| EE T = cmtn, (3.6)

r tr t

where C does not depend on x and r. Let Ty be a sublinear operator satisfying the condition

(2.3) with @ = 0 bounded on L ,(G) for p > 1, and bounded from L1(G) to WL1(G). Then

the operator Ty is bounded from M, 4 (G) to My, 4, (G) for p > 1 and from M) 4, (G) to
WM 4 (G).

Proof By condition (3.6) and Theorems 2.1, 3.1 with vo(r) = o, v =
_Q _o_
o1(x,r)" T, gr) =I1fllL,Bery andw@r) =r » ! we have for p > 1

oo
_ _9 4
170 f 1m0y S sup @20x,7) " / If L, Byt P dt
r

x€G,r>0

1 -9
= sup @10, ) P fll, e = 1£1m,, ©

xeR”,r>0

and for p =1

oo
IToflwm @) S sup fPZ(x,”)_l/ Il Byt 2 dt
r

x€G, r>0

= sup @1, N U f LBy = 1 vy, @)-
x€G,r>0

m}

Corollary 3.1 Let1 < p < coand ¢y, 3 € 2, satisfy the condition (3.6). Then the maximal
operator M and Calderén—Zygmund operator T are bounded from M, ,, (G) to M o, (G)
for p > 1 and from M o, (G) to WM 4, (G).

Corollary3.2 Let 1 < p < oo and ¢ € G, satisfy the condition (1.4). Let Ty be a sublinear
operator satisfying condition (2.3) with a = 0 bounded on L ,(G) for p > 1, and bounded
from L1(G) to WL1(G). Then the operator Ty is bounded on M, ,(G) for p > 1 and from
M1 ,,(G) to WMy ,(G).

Corollary 3.3 Let1 < p < coand ¢ € G, satisfy the condition (1.4). Then the operators M,
T are bounded on M, ,(G) for p > 1 and from M1 ,(G) to WM ,(G).

A—1
|B(x,r)| 7, from Theorem 3.2 we get the following

Note that for ¢ (x, r) = @2(x, 1)
new result.

Corollary3.4 Let 1 < p < coand 0 < A < 1. Let Ty be a sublinear operator satisfying
condition (2.3) with o = 0 bounded on L ,(G) for p > 1, and bounded from Li(G) to
WL(G). Then the operator Ty is bounded on L, ;(G) for p > 1 and from Ly ;(G) to
WLi,(G).

The following corollary for the operators M and T was proved in [33].
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Corollary 3.5 [33] Let 1 < p < o0 and 0 < A < 1. Then for p > 1, the operators M, T
are bounded on L, 3 (G) and for p = 1, the operators M, T are bounded from L1 ;(G) to
WL (G).

Next we state one of our main results. First we present some estimates which are the main
tools for proving our theorems, on the boundedness of the operators T, with « € (0, Q) on
the generalized Morrey spaces.

Theorem33 Letl < p<qg<00,0<a < Q2 and L— 1 _ 2 Jetalso T, be a sublinear

operator satisfying condition (2.3), bounded from Ly (G) to L4(G) for p > 1, and bounded
Sfrom L1(G) to WL4(G) for p = 1.
Then, for 1 < p < % the inequality

o0

[ _9 4
1 To fllL, By <Cre / I flL,Baaypyt ¢ dt

2cor

holds for any ball B(x,r) and for all f € Lg’c (G), where C does not depend on f, x and
r> 0.
Moreover, for p = 1 the inequality

o0

9 _2
1 To fllwe, By < Crd f I fllLyBapyt ¢ dt, (3.7)

2cor

holds for any ball B(x,r) and for all f € L1]°C (G), where C does not depend on f, x and
r > 0.

Proof Let1 < p < g < 00,0 < 0 < Qandé =
B = B(x,r),2coB = B(x,2cor). We represent f as

f=htfo HO)=FDxeos®). LO)=fOXe,, 50 >0

and have

% - % For arbitrary x € G, set

1T fllL, 8 < 1 TafillL,B) + 1 Te f2lIL, B)-

Since f1 € L,(G), Ty f1 € Ly(G) and from the boundedness of T, from L ,(G) to L, (G)
(see Lemma 3.2) it follows that:

1Te fillL,8) < 1 Te fill,) < CllfAllL,@ = CIfllL,@c0B),
where constant C > 0 is independent of f.

. C . .
Itis clear that z € B, y € (2¢oB) implies 2]?0||x oy M <lzoy ™ < 3 )x 0yl
We get

Lf O

— 1o a4y
o) X 0 y~1||@—

ITe f2(2)] ﬁ

By Fubini’s theorem we have

[fD)I / o0 dt
— s —dy= |f(y)|(/ 7) dy
/G(zcoB) x o y=1|@—« C2coB) Ixoy—1] 191~
[/ FOIy) o
~ y Y) Otl—a
2cor 2cor<|lxoy~l|<t 1O+l

e dt
dy ) ———.
=[ () o) g

cor
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By applying Holder’s inequality, we get

o0

1T 20| < / Il By 19 de

2cor

*° dt
S , Iz ey ML, e g (3.8)

cor

0 o,

< I flL,Beyt ¢ dt.
2cor

Moreover, for all p € [1, 00) the inequality

[ee)

Q _9 4
1 Te fallL,B) S / I, Byt ¢ dt (3.9)
2cor

o

is valid. Thus

o [ _o_,
1 Ta Fllzgr S 1Ny cam + 14 /2 1l sy 5 dr.
cor
On the other hand,
Q2 * _0_4
I/, con) = 1T fllL,coB) ta dt
2cor
o [ _0_,
Sra I flL,Bamt ¢ dt. (3.10)
2cor
Thus
o [ _0_,
1T fllL ) ST 1AL, Byt @ dt.
2cor

Let p = 1. From the weak (1, ¢) boundedness of T, (see Lemma 3.2) and (3.10) it follows

that
I1To fillwe,s) < T fillwe,@) S I filley@) = £ L @eoB)

e T
~rd . 4
ra A flle B /Zcort (3.11)
o [ -2
Sr"/ Il eyt @ dt.
2cor
By (3.9) and (3.11) we get the inequality (3.7). o

Theorem 3.4 Let1§p<q<oo,0<oz<g L

1_a :
2 a7 Q,and<p1 € Qp, g2 € Q satisfy
the condition

o
o0 H iy
/ = mf’“"‘;"”(’c’s”p —‘it < Coa(x,r), (3.12)
j

ta
where C does not depend on x and r. Let T, be a sublinear operator satisfying condition
(2.3) with a € (0, Q), bounded from L, (G) to Ly(G) for p > 1, and bounded from L(G)
to WLy (G) for p = 1. Then the operator T, is bounded from M, , (G) to M, 4,(G) for
p > land from My o, (G) to WMy o, (G) for p = 1. Moreover, for p > 1

1Ta fllMy gy @) S NS NIM, @)

and for p =1
1Ta fllwmy oy @) S N llay, @)-
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Proof By condition (3.12) and Theorems 2.1, 3.3 with v (r) = o, ) v =
_9Q _90_
o1(x, )T, g(r) = I F L, B and w(r) =71 7 ! we have for p>1

IR _1dt
1 Tef Mgy, @) S sUp @2(x,7)7" f 1 f 1y By 1BO 0170 =
r

x€G, r>0

S osup @i )BT , 1 f L, B =I1flm,,, @)

x€G,r>0

and for p =1

N _1dt
T flwsty @ S 50 oaen)™ [ 1 ey 1B
r

xeG,r>0

= sup o1, ) B@, AT LBy = 1 I, @)

x€G,r>0

m}

Corollary3.6 [18] Let1 < p<q <00, 0 < a < %, t=1-Sande € Qp peQ

satisfy condition (3.12). Then the fractional maximal operator My and the fractional integral
operator 1y are bounded from M), , (G) to My 4,(G) for p > 1 and from My 4 (G) to
WMy 4, (G) for p = 1.

If in Theorem 3.4 take ¢ (r) = @(r) € Gp, p2(r) = r%¢p(r), then we get the following
new corollary.

Corollary3.7 Let 1 < p < g < 00,0 < @ < %,
condition

% — %, and ¢ € G, satisfy the

< =

/oota_lgo(t) dt < Cr® o(r), (3.13)

where C does not depend on r. Let T, be a sublinear operator satisfying condition (2.3) with
a € (0, Q), bounded from L ,(G) to Ly (G) for p > 1, and bounded from L\ (G) to WL, (G)
for p = 1. Then the operator Ty is bounded from M, ,(G) to My ;e o) (G) for p > 1 and
from My o(G) to WM o () (G) for p = 1.

Corollary3.8 Let 1 < p < g < 00,0 < < %, é = i—a and ¢ € G, satisfy the
condition (3.13). Then the operators My and 1, are bounded from M, ,(G) to My e o) (G)
for p > 1 and from My ,(G) to WM y« () (G) for p = 1.

A—1
For ¢1(x,r) = @a(x,r) = |B(x,r)| » , from Theorem 3.4 we get the following new
result.
Corollary3.9 Let 1 < p <qg <00, 0 < < Q, 1 %—%ando <A< g.Letalso

Ty be a sublinear operator satisfying condition (2.331 with o € (0, Q) bounded from L ,(G)
to Ly(G) for p > 1, and from L1(G) to WL4(G). Then the operator Ty is bounded from
L, :.(G) to Ly q/p(G) for p > 1 and from L ;,(G) to WL ;4(G) for p = 1.

The following corollary for the operator /, was proved in [33].

Corollary3.10 Let 1 < p <g <00, 0 < < g1 :%—fand0<)u< £. Then the
operators My and 1, are bounded from L, 5 (G) to Lq aq/p(G) for p > 1 and from L1 3 (G)
to WLy 34(G) for p = 1.
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4 Interpolation inequalities

We recall a statement in [44]:

Lemma4.1 Let K € C(G\{0}) be homogeneous of degree a (e € R) with respect to the

dilations (8)))>0, then there exists a constant ¢ > 0 such that
IK(2)] < cllz®,

where ¢ = sup |K (z)|, n denotes the unit sphere of G.
Y

Observe that if the integral kernel K (-) is homogeneous of degrees — Q, then

Tf(x)= V.P./GK(X oy f(ydy

is obviously a Calder6n—Zygmund operator.

Given two balls B;, B,, and a function ¢ € C;°(G), let us write B, < ¢ < B, to mean
that 0 < ¢(x) < 1,¢(x) = 1 on B, and supp¢ < B,,. Now we show several interpolation

inequalities in generalized Sobolev—Morrey spaces on G.

Lemmad.2 Let 1 < p < oo and ¢ € Q) satisfy the condition (1.2). Then there exists a
constant ¢ > 0 such that for any ¢ > 0 and any test function u, the following inequality holds

1
IDully, @ < elD*ullu, @ + ~llullug, @)

Proof From Lemma 2.1, we have

Xiu(x) = / XiT(x oy ) Cu(y)dy = / Fitr oy Lu(y)dy.
G G

Let ¢ be a cutoff function with By 2(0) < ¢ < B;(0), and split I'; as
i =¢l'i + 0 -l = Ko + Koo,

where K¢ and K, are all homogeneous of degrees 1 — Q, then

Xiu(x) = f Ko(x o y™HLu(y)dy
{yeG:[lxoy~l|I<1}

+ / Koo(x oy DLu(y)dy :=1+11.
{yeGilxoy==1/2}

In terms of Lemma 4.1 (see [33, pp. 1332]),
|| < / |Ko(x oy DI[Lu(y)ldy < CMLu(x),
{yeG:llxoy~t<1}

where C does not depend on x.
Using Corollary 3.3, we infer that

1M, @) S IMLully, @ S 1 Lully,,© S 1D ulu, )
In terms of Lemma 4.1 (see, [33, pp. 1332]),

=1 Roolr™ 0 »)Lu(y)dy| = CMu(),
(veGillxoy=t|I=1/2}
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where C does not depend on x.
It follows by Lemma 3.5 that

111m,,@ S IMullm,, ) <clulm,,G)- 4.5)
Summing (4.3) and (4.5), we obtain
1Dullu, @ S ID*ullu,, @) + lulu,, -
A dilation argument leads to
elDullu, @) S 1D ullm, @ + lully, @)
and the proof of the lemma is concluded. O

In the case of Euclidean space, the interpolation result on higher order derivatives can
be deduced by the induction. But in our context the interpolation lemma on higher order
derivative of vector fields cannot be deduced simply from that on lower order derivative by
the induction. Now we need to use the representation formula of higher order derivative on
homogeneous groups to arrive at our aim.

Lemma 4.3 (See [7]) Let Q > 4, for every integer k > 2 and any couple of left invariant
differential monomials P*~' and P*~2, homogeneous of degrees 2k — 1 and 2k — 2,
respectively, we can determine two kernels KV, K® e C%°(G\{0}) which are homogeneous
of degrees 1 — Q and 2 — Q, respectively, such that for any test function u,

Py (x) = ((l:kbt) * K(l))(x)’
P*2y(x) = ((Eku) * K(z))(x),

where LK = £L... L.
N——

k times

Lemmad.4 Let 1 < p < oo and ¢ € Q) satisfy the condition (1.2). If k > 2 is an integer,
then there exists a constant ¢ = c¢(Q, k) > 0 such that for every ¢ > 0 and any test function
u,

_ c
1% ullu, y @) < eID*ullut, @) + g 41y, ©)-
Proof Suppose that ¢ is a cutoff function with B 2(0) < ¢ < B1(0). By Lemma 4.3, we
have
PRy (x) = ((z:ku) * K(l))(x).
Now let us split KD in the following way

KD — ¢K(1) +(1— ¢)K(1) — K(()l) + K(()é),

where K, él) and K éé) are homogeneous of degrees 1 — Q. Thus
PP u(x) = / Kooy HLu(ydy
{(yeGillxoy=tji<1}

+ / KD oy hcku(y)dy
{yeG:llxoy=1>1/2}

=6Lx) + Lx). (4.6)

@ Springer



69 Page 18 of 23 V.S. Guliyev

It is easy to see with (4.2) that
(ol < / KD (x oy D 1L u)ldy < ML ut).
{yeG:|lxoy~1]<1}

From Corollary 3.3

IOl @) S IMLull, @ S 1CulM, @) S ID ullm, @) @)

We have by using Lemma 4.1 and the way in (4.4) (see [33, pp. 1333]),

- lu(y)|dy
[Lx)| S / ——" < Mu(x).
20: {yeG2i—1 <|xoy-1] <27} [lx 0 y~1[|Q+2k~1

Applying Lemma 3.5,

1Oy, @ S 1Ml @ S lull,, - 4.8)
Combining (4.7) and (4.8), we have from (4.6) that
ID* i, @) S IDFullm,, @ + lullm,,©-
A dilation argument shows
e ND* Ny, ) S e*ID* U, @) + M, ©).

and this ends the proof. O

Lemmad.5 Let 1 < p < oo and ¢ € Q) satisfy the condition (1.2). If k > 2 is an integer,
there exists a constant c = c(Q, k) > 0 such that for every € > 0 and any test function u,

_ c
ID%2ullmy o @) < e ID*ullm, o @) + =3 141y,©)-
Proof Let ¢ be a cutoff function with By /»(0) < ¢ < B;(0). By Lemma 4.3, we see
PF () = () « K@) @).

Split K@ as
K® =gkV 4+ (1 -¢p)k@ =k’ + k2,

where K, éz) and K é%) are homogeneous of degrees 2 — O, then
P = [ K& (x 0y~ )L uty)dy
{yeG:llxoy=lI<1}

+ / K (x oy~ HLfu(y)dy
{yeGillxoy=lI21/2}
= Ji(x) + J2(x).
Analogously to the proof of Lemma 4.4, it yields

k k 2%
11 Ollm, @) S IMLullm, @) S 1L M, @) S 1D ullm, , ),
120m, @) S IMullm, @) S lullv,,@)-

Therefore
%2 2%
1D “ullm, ) S 1D ullm, @) + lullm,, @)

@ Springer



Generalized Sobolev—Morrey estimates... Page190f23 69

A dilation argument deduces
2k—2) ry2k—2 24k 92k
e NDT  ullm, ) S e IDullm, @) + llullm, ,G)-

This completes the proof. O

5 Proof of the main theorems

The following result is known, see [7,21].

Lemma 5.1 For some integer h with0 < h < Q, assume that K, € C*°(G\{0}) is homoge-
neous of degree h — Q, f is an integrable function and Ty, is defined by

Tnf = fx*Kp,
P" is a left invariant homogeneous differential operator of degree h, then
P'Tyf =V.P.(f %« P"Ky) +c f,
for some constant ¢ depending on K, and P".

Proof of Theorem 1.1. It holds from Lemma 2.1 that
Xi X ju(x) = V.P./ Tij(x oy D Lu(y)dy + cij Lu(x),
G
and using Corollary 3.3,

X iy -1
XX a0 5| [ Tt oy Ludy| o a6

S Lullm, ,)- (5.1)
m
Due to apXou = Lu — ) a;jX; X, it follows that
ij=1
I Xoullm, @) < ILullm, ,)- (5.2)
Then by (5.1) and (5.2)
ID*ullm, ) S ILull, ,@)- (5.3)

From Lemma 4.2, we have
< 2 !
1Dl @) S € 1Dl @) +  Nutllig, o)

1
Selllullm,, @ + z lullnm, ,@)- (5.4)
Combining (5.3) and (5.4)
lallss ) = lellng, o) + I1Dullug, @) + 1D*ulu,, )

S culm, @) + lullm, , @)

the proof is ended. O
Proof of Theorem 1.2. In order to prove the conclusion, we need to establish the following
inequality: if k is a positive integer, there exists a constant ¢ > 0 such that for every test

function u,
1D*ully, o) < eI D*2Lully,, - (5.5)
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When k = 1, by (5.3),
1D*ullm, ) S I1Lullm,, @) (5.6)

When k > 2, since X( cannot be expressed as the composition of two vector field with
homogeneity of degree 1, it follows that D* cannot be obtained from D(D*~!) directly.
But P¥ can be written as XoP*~2 or X; P21 (i =1,...,m), denoted by P2P2%-2 3nd
pp=1 respectively. Furthermore, it holds from Lemma 4.3 that

Py (x) = ((Eku) * K(l))(x),
P22y (x) = ((Eku) " K<2>)(x),

where KU, K® are homogeneous of degrees 1 — Q and 2 — Q, respectively.
In the case of P2 = P2P2~2 we have from Lemma 5.1,

PHu(x) = V.P./ P2KP (x o y™H(Lru)(y)dy + cij (Lru) (x),
G
where P2K ) is homogeneous of degree — Q. Applying Corollary 3.3,

122l 00 < | [ PPROCox D o], 1l

oG
k %2
SILullm, @) S IDT " Lullm, ,)-

In the case of P2 = P PZ%*~1 we obtain by using Lemma 5.1,
P u(x) = V.P./ PKD(x oy ™) (LXu)(y)dy + cij (Lru) (x),
G
where P K1 is homogeneous of degree — Q. By virtue of Corollary 3.3,

1P ullu, 0 5 | / PED oy ) w(ydy| + 1Lk ulm, o)
G My, (G)

k 2k—2
S Ickully, @ S ID*2Lully,, -

Asa consequence
2% 2%-2
1D ullm, ) S NID™"“Lullm, ,G)

and (5.5) is proved.
Then
ID** 2 ulm, @) S ID*Lullm,, @) (5.7)

Lemma 4.4 implies that

1
2%+1 2k+2
1D ullm, ) S e ID"ullm, @) + pory lullm, @)

<e|D*c : 5.8
Sel ullm, @) + pTany lells, , @) (5.8)
Combining (5.7) and (5.8), we have
Il 252 gy = Nl @) + 1D*F g, ) + 1D*Fulli, o)

2,
SID* Lullm, @) + lullm,, @)

= ICulls ) + lullagy p -
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Theorem 1.2 is proved.
Proof of Theorem 1.3. From Lemma 2.1, we get

X,»u<x>=/ Fi(x o y™") Lu(y) dy.
G

Since the function I'; (-) is homogeneous of degree 1 — Q, it follows by Lemma 4.1 that

|Lu(y)|
X; < | ——ay,
| ’”(")'N/anoy—ww—l Y

and we finish the proof by applying Corollary 3.6 with « = 1.

|Lu(y)]
1 Xil, 5”/ e —
HMae @~ Jo oy =112 Y, @
S cullm, , @), i=12,....,m.
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