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NONLINEAR ELLIPTIC EQUATIONS WITH

SMALL BMO COEFFICIENTS IN NONSMOOTH
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T. S. GADJIEV ∗ AND V. S. GULIYEV

(Communicated by Y. Sawano)

Abstract. We obtain the generalized Sobolev-Morrey spaces W 1
p,ϕ (Ω) estimate for weak solu-

tions of a boundary value problem for nonlinear elliptic equations with BMO coefficients in
nonsmooth domains. We investigate regularity of the weak solutions in generalized Morrey
spaces Mp,ϕ (Ω) . The nonlinearity has sufficiently small BMO seminorm and the boundary of
the domain is sufficiently flat.

1. Introduction

The classical Morrey spaces Lp,λ is originally introduced in order to study the
local behavior of the solutions to elliptic differential equations. The inclusion from the
Morrey spaces into Hölder spaces permits to obtain regularity of the solution to elliptic
boundary problems. For the properties and applications of the classical Morrey spaces
we refer the readers to [27, 29]. In [8] Chiarenza and Frasca show boundedness of the
Hardy-Littlewood maximal operator in Lp,λ (Rn) that allows them to prove continuity
of fractional and classical Calderon-Zygmund operators in these spaces and solvability
boundary problem. The second author, Mizuhara and Nakai [15, 28, 30] introduced
generalized Morrey spaces Mp,ϕ(Rn) (see, also [16, 17, 35]). In [15, 17, 28, 30], the
boundedness of the classical operators and their commutators in spaces Mp,ϕ was also
studied, see also [10, 18, 36].

Let ϕ be a positive measurable function on Rn × (0,∞) . The space Mp,ϕ(Rn) is
defined by the norm

‖ f‖Mp,ϕ ≡ sup
x∈Rn,r>0

ϕ(x,r)−1 |B(x,r)|−1/p ‖ f‖Lp(B(x,r)).

Here and everywhere in the sequel B(x,r) is the ball in Rn of radius r centered at x
and |B(x,r)| = vnrn is its Lebesgue measure, where vn is the volume of the unit ball in
Rn .
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The second author studies the continuity and boundedness properties of sublin-
ear operators generated by various integral operators as maximal operator, Calderon-
Zygmund operators and etc. in generalized Morrey space ([1, 15, 17, 18], see also
[28, 30, 35, 36]). These results have many applications in the theory of differential
equations ([8, 12, 13, 14, 19, 21, 22, 33, 37], see also [2, 4, 5, 6, 7, 9, 11, 20, 23, 25, 26]).
Therefore, in the first part of the references we cited those works that are closely related
to our work. In the second part of the references we cited those works that are close
to this topic. Moreover, in [19] Dirichlet boundary value problems for the higher order
linear uniformly elliptic equations in generalized Morrey spaces were considered.

In this paper we investigate the regularity of weak solutions in generalized Morrey
spaces Mp,ϕ(Ω) . Specifically, we find the conditions on the nonlinearity of equation
and the most general geometric requirement to the boundary ∂Ω so that obtain of the
following global W 1

p,ϕ(Ω) estimate

‖∇u‖Mp,ϕ (Ω) � C
(‖ f‖Mp,ϕ +1

)
. (1.1)

Our result holds for any value of p ∈ [2,+∞) . Obviously, such a result requires
regularity condition for coefficients of the equation and the geometric conditions on a
bounded open domain Ω .

There have been many works with W 1
p (Ω) estimates in this direction. For the

linear case Di Fazio in [11] obtained the global W 1
p (Ω) estimate (1.1) for each 1 <

p < ∞ provided the coefficients of equation are in VMO and the domain is in C1,1 . The
result in [11] was extended to the case that Ω is in C1 by Auscher and Qafsaoni [2]. The
main argument in [2, 11] is based on explicit representation formulas involving singular
integral operators and commutators. In [4] it is obtained that the same result as in [2, 11]
under the condition that the coefficients have small BMO seminorms, which is weaker
than VMO condition, and in the geometric setting that the domain is sufficiently flat
in the Reifenberg sence. The approach in [4] relies on weak compactness, the Hardy-
Littlewood maximal function, the Vitali covering lemma, good λ – inequalities, energy
estimates.

We would like to remark that the general theory of singular integral operators and
commutators has some limitation to Lipshitz domains and may seem to work only for
the linear equation in this direction.

For the quasilinear elliptic quations of p -Laplacian type DiBenedetto and Man-
fredi in [9] obtained the interior W 1

q (Ω) , q � p estimates coefficients is the identity
matrix by applying maximal function inequalities. When coefficients is uniformly el-
liptic, the interior and boundary W 1

q (Ω) , q � p estimates were obtained by Kinnunen
and Zhou in [25, 26] under the assumptions that coefficients are of VMO class and Ω
is of C1,α , 0 < α � 1. In [25, 26] it is found that a local version for the sharp maximal
functions to prove the interior estimates and employed the flattening argument to obtain
the boundary estimates. Their results were extended to the case that coefficients have
the small BMO seminorms and Ω is Reifenberg flat in [6].

Our approach is based on the maximal function and the Caldron-Zygmund decom-
position. The goal of this paper is to formulate and prove of the results in [6, 25, 26] for
equations on nonvariational type in generalized Sobolev-Morrey type spaces when do-
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main Ω is nonsmooth. We also want to find the regularity results for elliptic equations
with discontinuous nonlinearity in nondivergence form in W 2

p,ϕ(Ω) , p > n .
By A � B we mean that A � CB with some positive constant C independent of

appropriate quantities. If A � B and B � A , we write A ≈ B and say that A and B are
equivalent.

2. Boundedness of the maximal operator in generalized Morrey spaces

The Hardy-Littlewood maximal function M f for f ∈ Lloc
1 (Rn) is defined by

M f (x) = sup
r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy.

If Ω is a bounded domain in Rn and f ∈ L1(Ω), then M f = M f̃ , where f̃ is the
zero extension of f in the whole space. It is well known that M is a bounded sub-linear
operator from Lp into itself. Precisely, if f ∈ Lp(Rn), p ∈ (1,∞), then∫

Rn
| f (x)|p dx �

∫
Rn

|M f (x)|p dx � Cp

∫
Rn

| f (x)|p dx (2.1)

for some positive constant Cp = C(p,n). Moreover, the following weak type estimate
holds ∣∣{x ∈ R

n : M f (x) > t}∣∣� Cp

t p

∫
Rn

| f (x)|p dx (2.2)

for any 1 � p < ∞ and any t > 0.

Our standing assumption is that the domain Ω ⊂ Rn , n � 2 is a bounded domain
with nonsmooth boundary ∂Ω .

DEFINITION 2.1. Let ϕ : Ω×R+ → R+ be a measurable function and 1 � p <
∞ . For any domain Ω the generalized Morrey space Mp,ϕ(Ω) (the weak generalized
Morrey space WMp,ϕ(Ω)) consists of all f ∈ Lloc

p (Ω)

‖ f‖Mp,ϕ (Ω) = sup
x∈Ω,0<r<d

ϕ−1(x,r)r−n/p ‖ f‖Lp(Ω(x,r)) < ∞,

(
‖ f‖WMp,ϕ (Ω) = sup

x∈Ω,0<r<d
ϕ−1(x,r)r−n/p ‖ f‖WLp(Ω(x,r)) < ∞

)

where d = supx,y∈Ω |x− y| , B(x,r) = {y ∈ Rn : |x− y|< r} and Ω(x,r) = Ω∩B(x,r) .

In the case of ϕ(x,r) = r
λ−n

p the generalized Morrey space Mp,ϕ (the weak gener-
alized Morrey space WMp,ϕ ) is the classical Morrey space Lp,λ (classical weak Morrey
space WLp,λ ). However, there exist examples of weight functions of more general form

as ϕ(r) = r ln(r +2) or ϕ(B(x,r)) =
(∫

B(x,r) w(y)dy
)α

, 0 < α < 1, where w ∈ Aq is

Muckenhoupt weight with q ∈ (1, 1
α
)

(see [30]). One more example is the following.
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In [32] it is shown that the function f (x) = χ[−1,1](x) |x|−1/2 belongs to L1,ϕ (R)
with

ϕ(I) =
∫

I
|x|α dx, −1 < α � −1

2
,

where I is any interval in R .
We denote by L∞,v(0,∞) the space of all functions g(t) , t > 0 with finite norm

‖g‖L∞,v(0,∞) = sup
t>0

v(t)g(t)

and L∞(0,∞) ≡ L∞,1(0,∞) . Let M(0,∞) be the set of all Lebesgue-measurable func-
tions on (0,∞) and M+(0,∞) its subset consisting of all nonnegative functions on
(0,∞) . We denote by M+(0,∞;↑) the cone of all functions in M+(0,∞) which are
non-decreasing on (0,∞) and

A =
{

ϕ ∈ M+(0,∞;↑) : lim
t→0+

ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on (0,∞) . We define the supremal
operator Su on g ∈ M(0,∞) by

(Sug)(t) := ‖ug‖L∞(t,∞), t ∈ (0,∞).

We invoke the following theorem.

THEOREM 2.1. [3] Let v1 , v2 be non-negative measurable functions satisfying
0 < ‖v1‖L∞(t,∞) < ∞ for any t > 0 and let u be a continuous non-negative function on
(0,∞) .

Then the operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if
and only if ∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

< ∞. (2.3)

The following lemmas were proved in [1].

LEMMA 2.1. Let 1 < p < ∞ . Then for any ball B = B(x,r) in Rn the inequality

‖M f‖Lp(B(x,r)) � ‖ f‖Lp(B(x,2r)) + r
n
p sup

s>2r
s−n‖ f‖L1(B(x,s)) (2.4)

holds for all f ∈ Lloc
p (Rn) .

Moreover, the inequality

‖M f‖WL1(B(x,r)) � ‖ f‖L1(B(x,2r)) + rn sup
s>2r

s−n‖ f‖L1(B(x,s)) (2.5)

holds for all f ∈ Lloc
1 (Rn) .

LEMMA 2.2. Let 1 < p < ∞ . Then for any ball B = B(x,r) in Rn , the inequality

‖M f‖Lp(B) � r
n
p sup

s>2r
s−

n
p ‖ f‖Lp(B(x,s)) (2.6)
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holds for all f ∈ Lloc
p (Rn) .

Moreover, the inequality

‖M f‖WL1(B) � rn sup
s>2r

s−n‖ f‖L1(B(x,s)) (2.7)

holds for all f ∈ Lloc
1 (Rn) .

We give the following boundedness result of maximal operators in generalized
Morrey spaces which is obtained from Theorem 2.1 and Lemma 2.1.

THEOREM 2.2. [1] Assume that 1 � p < ∞ and there is a positive constant C
such that for any fixed x ∈ Rn and r > 0 the following inequality holds

sup
r<s<∞

ess inf
s<τ<∞

ϕ1(B(x,τ))τ
n
p

s
n
p

� Cϕ2(B(x,r)). (2.8)

Then for p > 1 , M is bounded from Mp,ϕ1(R
n) to Mp,ϕ2(R

n) and for p = 1 , M is
bounded from M1,ϕ1(R

n) to WM1,ϕ2(R
n) .

COROLLARY 2.1. (Maximal inequality) Assume that for 1 < p < ∞, there is a
positive constant C such that for any fixed x ∈ Rn and r > 0 the following inequality
holds

sup
r<s<∞

ess inf
s<τ<∞

ϕ(B(x,τ))τ
n
p

s
n
p

� Cϕ(B(x,r)), (2.9)

where C does not depend on x and r . Then there is a constant Cp > 0 such that

‖ f‖Mp,ϕ (Rn) � ‖M f‖Mp,ϕ (Rn) � Cp‖ f‖Mp,ϕ (Rn), f ∈ Mp,ϕ(Rn) .

Denote by Gp the set of all decreasing functions φ : (0,∞) → (0,∞) such that

r ∈ (0,∞) �→ r
n
q φ(r) ∈ (0,∞) is almost increasing.

From Theorem 2.2 we get the following statement, which were proved in [31, 34].

COROLLARY 2.2. [31, 34] Let 1 � p < ∞ and φ ∈ Gp . Then for p > 1 , M is
bounded on Mp,ϕ(Rn) and for p = 1 , M is bounded from M1,ϕ(Rn) to WM1,ϕ2(R

n) .

Impose in addition a kind of monotonicity condition on ϕ , precisely

ϕ(B(y,r)) � ϕ(B(z,s)) for all B(y,r) ⊂ B(z,s) . (2.10)

This implies that for a given bounded domain Ω ⊂ R
n , the following inequality holds

sup
y∈Ω
r>0

|Ω(y,r)|
ϕ(B(y,r))

� k1, (2.11)

with a positive constant k1 depending on n , ϕ and Ω . In fact, since Ω is bounded
domain there exists d > 0 such that Ω ⊂ B(0,d). Then, if r � 2d for any y ∈ Ω we
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have |Ω(y,r)|
ϕ(B(y,r))

� |Ω|
ϕ(B(0,d))

.

On the other hand, if 0 < r < 2d , then we see from (2.9) that

k2
ϕ(B(y,r))

rn � ϕ(B(0,d))
n(2d)n .

It implies that for some positive constant c = c(n) the following inequalities hold

|Ω(y,r)|
ϕ(B(y,r))

� crn

ϕ(B(y,r))
� ck2 n(2d)n

ϕ(B(0,d))
.

3. Definition and statement of the problem

Assume that Ω is bounded. We now introduce some geometric notation. Bρ =
{x∈Rn : |x|< ρ} is an open ball in Rn with center 0 and radius ρ > 0, Bρ(y)= Bρ +y ,
B+

ρ = Bρ ∩{x : xn > 0} , B+
ρ (y) = B+

ρ + y , Tρ = Bρ ∩{x : xn = 0} and Tρ(y) = Tρ + y .
Ωρ = Ω∩Bρ and Ωρ(y) = Ω∩Bρ(y) . ∂Ω is the boundary of Ω , ∂Ωρ = ∂Ω∩Bρ is
the wiggled part of ∂Ωρ .

The generalized Sobolev-Morrey space W 1
p,ϕ(Ω) consists of all functions u ∈

W 1
p (Ω) with distributional derivatives Dsu ∈ Mp,ϕ(Ω) , endowed with the norm

‖u‖W1
p,ϕ(Ω) = ∑

0�|s|�1

‖Dsu‖Mp,ϕ (Ω).

The space W 1
p,ϕ(Ω)∩ W̊ 1

p (Ω) consists of all functions u ∈ W̊ 1
p (Ω) with Dsu ∈

Mp,ϕ(Ω) , 0 � |s| � 1 and is endowed by the same norm. Recall that W̊ 1
p (Ω) is the

closure of C∞
0 (Ω) with respect to the norm in W 1

p (Ω) .
We need the following version of the Vitali covering result.

LEMMA 3.3. [4] Let A and D be measurable sets with A⊂ D⊂ Ω . Assume that
Ω has nonsmooth boundary and there exists a small ε > 0 such that |A| < ε|B1| and
|A∩Br(x)| � ε|Br(x)| , Br(x)∩Ω ⊂ D with x ∈ Ω , r ∈ (0,1] . Then we have

|A| < [10/(1− δ )]nε|D|.
The next result follows from the standard measure theory (see, [22]).

LEMMA 3.4. Let f ∈ L1(U) be a nonnegative function on a bounded domain
U ⊂ Rn , ϕ be a weight satisfying (2.9) and (2.10), p ∈ (1,∞) and θ > 0,λ > 1 be
constants. Then f ∈ Mp,ϕ(U) if and only if

S = sup
y∈U,r>0

∑
k�1

λ kp |{x ∈U ∩B(y,r) : f (x) > θλ k}|
ϕ(B(y,r))p rn < ∞

and
1
C

S � ‖ f‖p
Mp,ϕ (U) � C(|U |+S),
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where C > 0 is a constant depending only on θ , λ , p and ϕ .

Proof. Choose y ∈U and take a ball B(y,r), then

r−n

ϕ(B(y,r))p

∫
B(y,r)

f (x)p dx =
r−n

ϕ(B(y,r))p

∫
{x∈B(y,r): f (x)�θλ}

f (x)p dx

+ ∑
k�1

r−n

ϕ(B(y,r))p

∫
{x∈B(y,r):θλ k< f (x)�θλ k+1}

f (x)p dx

�(θλ )p |B(y,r)|
ϕ(B(y,r))prn + ∑

k�1

(θλ k+1)p

ϕ(B(y,r))prn

∣∣{x ∈ B(y,r) : f (x) > θλ k}∣∣
=(θλ )p

(
|B(y,r)|

ϕ(B(y,r))prn + ∑
k�1

λ kp
∣∣{x ∈ B(y,r) : f (x) > θλ k}∣∣

ϕ(B(y,r))prn

)
.

Taking the supremum over y ∈U, and r > 0, and making use of (2.11), we get

‖ f‖p
Mp,ϕ (U) � |U |+S

with a constant depending on p , n , ϕ , λ and θ . On the other hand

r−n

ϕ(B(y,r))q

∫
B(y,r)

f (x)p dx =
pr−n

ϕ(B(y,r))p

∫
B(y,r)

(∫ f (x)

0
ξ p−1dξ

)
dx

=
pr−n

ϕ(B(y,r))p

∫ ∞

0

∣∣{x ∈ B(y,r) : f (x) > ξ}∣∣ξ p−1dξ

� pr−n

ϕ(B(y,r))p ∑
k�1

∣∣{x ∈ B(y,r) : f (x) > θλ k}∣∣∫ θλ k

θλ k−1
ξ p−1dξ

=θ q(1−λ−p)
r−n

ϕ(B(y,r))p ∑
k�1

λ kp
∣∣{x ∈ B(y,r) : f (x) > θλ k}∣∣ .

Taking again the supremum over y ∈U and r > 0 we get

‖ f‖p
Mp,ϕ (Ω) � 1

C
S

with a positive constant C = C(θ ,λ , p). �

Now we give the statement of problem. We are interested in the well-posedness in
generalized Sobolev-Morrey space W 1

p,ϕ(Ω) of the following nonlinear boundary value
problem: {

div a(x,u,∇u) = f in Ω,

u = 0 on ∂Ω,
(3.1)

where f ∈Mp,ϕ(Ω;Rn) is a given vector-valued function for some 2 � p < ∞ , a is the
vector field a = a(x,ξ ,ξx) : R×Rn×Rn → Rn which is measurable in x for almost
every ξ , and continuous in ξ for each x . For simplicity we consider a(x,ξ ,ξx) ≡
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a(x,ξ ) . The unknown is u(·) : Ω → R , where Ω is a bounded, open subset of Rn with
very nonsmooth boundary. We say that u ∈ W̊ 1

p (Ω) is a weak solution of (3.1) if it
satisfies ∫

Ω
a(x,∇u)∇ϕdx =

∫
Ω

fϕdx

for all ϕ ∈ W̊ 1
p (Ω) .

If there exists a function L : R×Rn →R such that a(x,ξ ) is the gradient of L(x,ξ )
with respect to ξ ∈ Rn

a(x,ξ ) = Δξ L(x,ξ ),

then (3.1) is the Euler-Lagrange equation corresponding to the integral

I(u) =
∫

Ω
(L(x,∇u)− f u)dx.

However, if the problem (3.1) is not of variational type i.e., there is no such a functional
L and the variational methods do not apply to our problem for the existence of a weak
solution. We will use the method of Browder and Minty. We suppose that there exists
a positive constant c0 such that

(a(x,ξ )−a(x,η))(ξ −η) � c0|ξ −η |p (3.2)

for all ξ ,η ∈ Rn , almost every x ∈ Ω and

|a(x,ξ )| � c1(1+ |ξ |)p−1. (3.3)

One can show that there exists a unique weak solution of (3.1) in generalized
Morrey spaces. We also suppose that a(x,ξ ) is uniformly Lipschitz continuous with
respect to the variable ξ and

|∇ξ a(x,ξ )| � c2. (3.4)

We will impose in the nonlinearity a . For ρ > 0 and y ∈ Rn in order to measure
the oscillation of a(x,ξ ) in the variable x over Bρ(y) , we define the function β : Ω→R

by

β [a,Bρ(y)](x) = sup
ξ∈Rn

|a(x,ξ )− aBρ (y)(ξ )|
1+ |ξ | , (3.5)

where we denote aBρ (y) by the integral average of a on Bρ(y)

aBρ (y)(ξ ) =
∮

Bρ (y)
a(x,ξ )dx =

1
|Bρ(y)|

∫
Bρ (y)

a(x,ξ )dx

is the integral average of a(x,ξ ) for each fixed ξ over Bρ(y) .
In the linear case, if a(x,ξ )=A(x)·ξ for each ξ ∈Rn and for almost every x∈Rn

β [a,Bρ(y)](x) � |A(x)−ABρ (y)|,

where ABρ (y) is the integral average of A on Bρ(y) and so it seems natural to consider
β [a,Bρ(y)] to be a version of the function of mean oscillation over Bρ(y) uniformly in
the variable ξ for the nonlinear case.
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We use the following assumption on the nonlinearity coefficients a(x,ξ ) (see, also
[4]).

DEFINITION 3.2. We say that the vector field a(x,ξ ) satisfies the (δ ,R)-BMO
condition if

sup
0<ρ�R

sup
y∈Rn

∮
Bρ (y)

|β [a,Bρ(y)]|2dx � δ 2. (3.6)

This definition is called also small BMO condition. Condition (3.6) is a good
replacement of small BMO condition used in [4]. The small BMO condition has been
extensively studied as an appropriate substitute for VMO condition (see [4]). Also we
use the following regularity condition on the boundary ∂Ω .

DEFINITION 3.3. We say that Ω is the (δ ,R)- Reifenberg flat if every x ∈ ∂Ω
and every r ∈ (0,R] , there exists a coordinate system {y1,y2, . . . ,yn} , which can depend
on r and x so that x = 0 in this coordinate system and that

Br ∩{yn > δ r} ⊂ Br(0)∩Ω ⊂ Br(0)∩{yn > −δ r}. (3.7)

Reifenberg domains arise naturally in minimal surface theory and free boundary
problems. The boundary of a Reifenberg domain is very rough and could be a fractal.
This is a geometric condition exhibiting a very low level of regularity, prescribing that
all scales the boundary can be trapped between two hyperplanes depending on the scale
chosen, see, for example [24]. Also we remark that a Lipschitz domain is a Reifenberg
flat domain provided its Lipschitz constant is sufficiently small (see [38, 39]). On the
other hand an inner neighborhood of the δ Reifenberg domain is a Lipschitz domain
for small δ (see [5]).

Our problem (3.1) is invariant under a normalization and a scaling though the
problem considered here is highly nonlinear.

LEMMA 3.5. [4] Assume that a(x,ξ ) satisfies (3.2), (3.3), (3.4) and the (δ ,R)-
BMO condition. Suppose further u ∈ W̊ 1

p (Ω) is the weak solution of the Dirichlet

problem (3.1). For fixed λ � 1 let uλ = u
λ , fλ = f

λ . Define

aλ (x,ξ ) =
a(x,λ ξ )

λ
, x,ξ ∈ R

n. (3.8)

Then aλ (x,ξ ) satisfies (3.2)–(3.4) and the (δ ,R)-BMO condition with the same con-
stants c0,c1,c2 , δ and R . Furthemore uλ ∈ W̊ 1

p (Ω) is the weak solution of{
div aλ (x,uλ ,∇uλ ) = fλ in Ω,

uλ = 0 on ∂Ω.
(3.9)

LEMMA 3.6. [4] Under the same conditions as in Lemma 3.3 we define ar(x,ξ )=
a(rx,ξ ), ur(x) = u(rx), fr(x) = f (rx) and Ωr = {x/r : x ∈ Ω}, r > 0. Then

1. ar(x,ξ ) satisfies (3.2)–(3.4) with the same constants.
2. ar(x,ξ ) satisfies the (δ ,R/r)- BMO condition.
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3. Ωr is the (δ ,R/r)- Reifenberg flat.
4. ur ∈W 1

0 (Ωr) is the weak solution of divar(x,∇ur) = fr in Ωr and ur = 0 in
∂Ωr .

4. Main result

The main theorem is stated as follows.

THEOREM 4.3. Let ϕ satisfy the condition (2.9) and 2 � p < ∞ . Assume there
exists δ > 0 , which dependent at c0 , c1 , c2 , p , n , such that if a(x,ξ ) satisfies (3.2),
(3.3), (3.4) and the (δ ,R)- BMO condition, Ω is the (δ ,R)-Reifenberg flat and f ∈
Mp,ϕ(Ω) . Then the weak solution u ∈ W̊ 1

p (Ω) of the problem (3.1) belongs to W̊ 1
p,ϕ(Ω)

with estimate (1.1).

We mean δ to be a small positive constant, which is determined later in the proof
of Theorem 3.1. Before we will obtain interior W 1

p (Ω) , 2 � p < ∞ estimates for the
elliptic equation

diva(x,∇u) = f in Ω (4.1)

assuming that a(x,ξ ) satisfies the (δ ,R)-BMO condition. By a scaling we take R = 8
and that B8 ⊂ Ω . We consider the following problem

divaB6(∇v) = 0 in B6. (4.2)

We say that v ∈W 1
p (B6) is a weak solution to (4.2), if∫

B6

aB6(∇v)(x) ·∇ϕ(x)dx = 0 (4.3)

for each ϕ ∈ W̊ 1
p (B6) .

Our sufficient regularity for (4.2) is the following interior W 1
∞ -estimate.

LEMMA 4.7. [4] Suppose that a satisfies the condition (3.4). Then for any weak
solution v ∈W 1

p (B6) of the problem (4.2) we have

‖∇v‖p
L∞(B3)

� C
∮

B5

|∇v(x)|pdx

for some constant C > 0.

We consider the Lp -average of f instead of its BMO seminorm.

LEMMA 4.8. Suppose that a satisfy the condition (3.4). Given ε > 0, there exists
a small δ = δ (ε) > 0 so that for any weak solution u ∈ W 1

p (Ω) of (4.1) with the
following normalization conditions∮

B6

|∇u(x)|pdx � 1



NONLINEAR ELLIPTIC EQUATIONS WITH BMO COEFFICIENTS 501

and ∮
B6

(|β [a,B6](x)|p + | f (x)|p)dx � δ p.

Then there exists a weak solution v ∈W 1
p (B6) of the problem (4.2) such that∫

B6

|(u− uB6)(x)− v(x)|pdx � ε p.

For the proof we use argue by contradiction. If not, there would exist ε0 > 0,
{ak}∞

k=1 , {uk}∞
k=1 and { fk}∞

k=1 such that uk ∈W 1
p (Ω) is a weak solution of

divak(x,∇uk) = div fk in Ω

with ∮
B6

|∇uk(x)|pdx � 1 (4.4)

and ∮
B6

(|β [ak,B6](x)|p + | fk(x)|p
)
dx � 1

k2 ,

but ∫
B6

∣∣(uk − uk,B6)(x)− vk(x)
∣∣pdx > ε p

0

for any weak solution vk ∈W 1
p (B6) of

div ak,B6(∇vk) = 0 in B6.

Using Poincare’s inequality and (4.4) we see that
{
uk − uk,B6

}∞
k=1 is uniformly

bounded in W 1
p (B6) . Then there exist a subsequence {ukj} and u0 ∈W 1

p (B6) such that

ukj → u0 in W 1
p (B6).

For each fixed bounded domain U in Rn , ak,B6(ξ ) is uniformly bounded and
equicontinious. Indeed, if ξ ∈U , then the growth condition implies that∣∣ak,B6(ξ )

∣∣� ∮
B6

∣∣ak(x,ξ )
∣∣dx �

∮
B6

(1+ |ξ |)p−1dx = (1+ |ξ |)p−1 ≈ 1+ |U |< ∞.

Similarly, by using (3.4) and the Lipschitz continuity of a(x,ξ ) in ξ for almost
every x , we find ∣∣∇ξ ak,B6(ξ )

∣∣� ∮
B6

∣∣∇ξ ak(x,ξ )
∣∣dx �

∮
B6

dx � 1.

If we apply the Arzela-Ascoli compactness criterion, then we obtain a subsequence{
ak,B6(ξ )

}
and a vector field a0(ξ ) such that ak,B6(ξ ) → a0(ξ ) locally uniformly

in R
n . In fact, we use the Arzela-Ascoli compactness criterion on each Bi(0) , i =

1,2, . . . and obtain ak,B6(ξ ) uniformly convergence to a0(ξ ) in Bi(0) and as usual, the
diagonal subsequence technique yields the locally uniform convergence.

Now taking k large enough we reach a contradiction.
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COROLLARY 4.3. Under the same conditions as in Lemma 4.8 we have∮
B2

|∇(u− v)(x)|pdx � ε p. (4.5)

Corollary 4.3 follows from Lemmas 4.7 and 4.8.

LEMMA 4.9. For given ε > 0 there exists a small δ = δ (ε) > 0 such that for any
weak solution u ∈W 1

p (Ω) of (4.1) with∮
Br

|β [a,Br](x)|pdx � δp (4.6)

and

B1∩{x ∈ Ω : M(|∇u|p)(x) � 1}∩{x∈ Ω : M(| f |p)(x) � δ p} �= /0, (4.7)

then there is a constant c3 > 0 which dependent only on c0 , c1 , c2 and n , we have∣∣∣{x ∈ Ω : M(|∇u|p)(x) > cp
3}∩B1

∣∣∣< ε|B1|.

Proof. From the condition (4.7), we see that there is a point x0 ∈ B1 such that for
each ρ > 0 we have∮

Bρ (x0)
|∇u(x)|pdx � 1,

∮
Bρ (x0)

| f (x)|pdx � δ p.

Then, since B6 ⊂ B7(x0) ⊂ B8 ⊂ Ω , we find∮
B6

|∇u(x)|pdx �
(7

6

)n ∮
B7(x0)

|∇u(x)|pdx �
(7

6

)n
.

By the same reason, we have ∮
B6

| f (x)|pdx �
(7

6

)n
δ p.

We fix any η ∈ (0,1) and set λ =
√

(7/6)n . Normalizing a , u and f to aλ , uλ and
fλ , respectively, as in Lemma 3.3 we have under the conditions of Lemma 4.8, which
gives us there exists a weak solution vλ ∈W 1

p (B6) of

div aλ ,B6
(∇vλ ) = 0 in B6,

such that ∮
B2

|∇(uλ − vλ )(x)|pdx � η p

for some small δ = δ (η) > 0 satisfying normalization conditions. Continuing, we use
inequality∮

B4

|∇vλ (x)|pdx � 2
∮

B4

(|∇(vλ −uλ )(x)|p + |∇uλ (x)|p)dx � η p +1 � 1.
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By Lemma 4.7, we get
‖vλ‖L∞(B3) � n0

for some constant n0 > 0. Note that for n1 = max{2n0,
√

(8/5)n} the following em-
bedding

{x ∈ B1 : M(|∇uλ |p)(x) > np
1} ⊂ {x ∈ B1 : MB6(|∇(uλ − vλ )|p)(x) > np

0} (4.8)

is valid.
Then using (4.8) and the weak type inequality (2.2), we obtain the following esti-

mates ∣∣∣{x ∈ B1 : M(|∇uλ |p)(x) > (λn1)p
}∣∣∣

=
∣∣∣{x ∈ B1 : M(|∇uλ |p)(x) > np

1

}∣∣∣
�
∣∣∣{x ∈ B1 : MB6(|∇(uλ − vλ )|p)(x) > np

0

}∣∣∣
�
∫

B2

|∇(uλ − vλ )(x)|pdx � η p.

Now we select η > 0, thereby δ = δ (η) > 0 satisfying∣∣∣{x ∈ B1 : M(|∇u|p)(x) � (λn1)p}
∣∣∣� η p < ε|B1|. �

Now let’s fix ε , δ , c3 given in Lemma 4.9. Then the lemma follows as the scaling
invariant form of Lemma 4.9 using the Lemma 3.4.

LEMMA 4.10. Let y ∈ Ω and r > 0 be small with B8r(y) ⊂ Ω . Suppose that a
satisfies (3.4) and the (δ ,8r)-BMO condition. Then for any weak solution u ∈W 1

p (Ω)
of the problem (4.1) satisfying

Br(y)∩{x ∈ Ω : M
(|∇u|p)(x) � 1}∩{x ∈ Ω : M

(|∇u|p)(x)} �= /0,

we have
|{x ∈ Ω : M

(|∇u|p)(x) > cp
3}∩Br(y)| < ε|Br(y)|.

THEOREM 4.4. Let
∣∣{x ∈ Ω : M

(|∇u|p)(x) > cp
3

}∩Br(y)
∣∣ > ε

∣∣Br(y)
∣∣. Suppose

that a satisfies (3.4) and the (δ ,8r)-BMO condition. Then for any weak solution
u ∈W 1

p (Ω) of the problem (4.1) and for any small ball Br(y) with B8r ⊂ Ω we have

Br(y) ⊂ {x ∈ Ω : M
(|∇u|p)(x) > 1}∪{x ∈ Ω : M(| f |p)(x) > δ p}.

Now we extend this results for the interior estimates to study the well-posedness in
W̊ 1

p (Ω) , 2 � p < ∞ , of the Dirichlet problem (4.1) with f ∈ Mp,ϕ(Ω) in the bounded
Reifenberg flat domain Ω ⊂ R

n . Let a(x,ξ ) has a small BMO seminorm. We con-
sider the situation that ∂Ω is the (δ ,N)- Reifenberg flat, where N is a sufficiently big
number. We are under the geometric setting

B+
ρ ⊂ Ωρ ⊂ Bρ ∩{xn > −2Nδ}, 1 � ρ � N. (4.9)



504 T. S. GADJIEV AND V. S. GULIYEV

Consider Dirichlet problem{
div aB+

6
(∇v) = 0 in B+

6 ,

v = 0 on ∂B+
6 .

(4.10)

The idea is that we can find local estimates in B+
6 of the weak solution u∈ W̊ 1

p (Ω)
of (4.1) by studying comparison with solutions of the problem (4.10) by studying the
deviation of the nonlinearity a(x,ξ ) of (4.1) from the coefficients of aB+

6
(ξ ) and by

measuring the deviation of ∂Ω from being a flat boundary at scale 6 and at the origin.
We remark that under conditions (3.2)–(3.4), the matrix ∇ξ aB+

6
(∇v(x)) is uni-

formly elliptic and bounded

∇ξ aB+
6
(∇v(x)ξ )ξ � c0|ξ |p and ∇ξ aB+

6
(∇v(x)) � c2 (4.11)

for all ξ ∈ Rn and almost every x ∈ B+
6 .

The sufficient regularity of (4.10) for our boundary estimates is the following in-
terior regularity.

LEMMA 4.11. [4] Let v ∈ W 1
p (B+

6 ) be a weak solution of the problem (4.10).
Then

‖∇v‖L∞(B+
3 ) � C

∮
B+

5

|∇v(x)|pdx

for some constant C > 0.

LEMMA 4.12. [4] Let a(x,ξ ) satisfy (3.4). Then, for given ε > 0, there exists
δ = δ (ε) > 0 so that for any weak solution u ∈ W̊ 1

p (Ω) to the problem (3.1) with the
following normalization conditions

B+
6 ⊂ Ω6 ⊂ B6∩{xn > −12δ}, (4.12)∮

Ω6

|∇u(x)|pdx � 1 (4.13)

and ∮
Ω6

(|β [a,Ω6](x)|p + | f (x)|p)dx � δ p. (4.14)

Then there exists a weak solution v ∈W 1
p (B+

6 ) of the problem (3.10) such that∫
B+

6

|(u− uB+
6
)(x)− v(x)|pdx � ε p. (4.15)

We want to extend v to Ω6 . We know that v = 0 on ∂B+
6 in the trace sences, it

is natural to use the zero extension. Under the same conditions as in Lemma 4.12, we
have ∮

Ω2

|∇(u− v)(x)|pdx � ε p. (4.16)
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LEMMA 4.13. Assume that u ∈ W̊ 1
p (Ω) is the weak solution of the problem (3.1)

and a(x,ξ ) satisfies (3.4). Then there is a positive constant c3(c0,c1,c2,n) such that
for given ε > 0 there exists a small δ (ε) > 0, if∮

Ωr

|β [a,Ωr](x)|pdx � δ p (1 � r � N), (4.17)

B+
r ⊂ Ωr ⊂ Br ∩{xn > −2rδ} (4.18)

and

Br ⊂ {x ∈ Ω : M
(|∇u(x)|p)(x) � 1}∪{x∈ Ω : M(| f |p)(x) � δ p} �= /0. (4.19)

Moreover ∣∣{x ∈ Ω : M
(|∇u|p)(x) > cp

3

}∪Br
∣∣< ε

∣∣Br
∣∣.

Proof. By the definition of the maximal function and from (4.19), there exists a
point x0 ∈ Ω1 such that for ρ > 0∮

Ωρ (x0)
|∇u(x)|pdx � 1,

∮
Ωρ (x0)

| f (x)|pdx � δ p. (4.20)

We note that x0 ∈ Ω1 , Ωr ⊂ Ω2r ⊂ Ω4r . Then from (4.20)∮
Ωr

|∇u(x)|pdx � |Ω2r|
|Ωr|

∮
Ω2r

|∇u(x)|pdx � |B2r|
|B+

r | � rn

and ∮
Ωr

| f (x)|pdx � rnδ p.

By Lemma 4.12 and by normalizing Lemma 3.5 with λ =
√

2rn , for any η > 0,
there exists a small δη and a weak solution vλ ∈W 1

p (Ωr) of{
div aλ ,B+

6
(∇vλ ) = 0 in B+

6 ,

vλ = 0 on ∂B+
6 .

We have ∫
Ω2

|∇(uλ − vλ )(x)|pdx � η p, (4.21)

where vλ is extended by zero to Ωr . We choose n1 and n0 , so that

{x ∈ Ω1 : M(|∇uλ |p)(x) > np
1} ⊂ {x ∈ Ω1 : M(|∇(uλ − vλ |p)(x) > np

0)}. (4.22)

By the definition of the maximal function

MΩr(|∇vλ |p) = M(χΩr |∇vλ |p),
MΩr(|∇(uλ − vλ )|p) = M(χΩr |∇(uλ − vλ )|p).

We choice MΩr(|∇(uλ − vλ )|p) � n2
0 such that for ρ > 0 and y ∈ Ω1 we have∮

Ωρ (y)
χΩr(x) |∇(uλ (x)− vλ (x)|pdx � np

0 .
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If 0 < ρ � 3, then Ωρ(y) ⊂ Ω3 and so∮
Ωρ (y)

|∇uλ (x)|pdx � C
∮

Ωρ (y)
χΩr(x)

(|∇(uλ − vλ )(x)|p + |∇vλ (x)|p)dx � n2
0.

In case ρ > 3, then Ωρ(y) ⊂ Ω2ρ(x0) ,∮
Ωρ (y)

|∇uλ (x)|pdx � |Ω2ρ |
|Ωρ |

∮
Ω2ρ (x0)

|∇uλ (x)|pdx

� 1
λ 2

|B2ρ |
B+

ρ

∮
Ωρ (y)

|∇u(x)|pdx � 1,

by (4.20) and (4.18). Thus y∈ Ω1 such that M(|∇uλ |p) � n2
1 . So we get c0η2 < ε|B1| .

Thus lemma is proved. �

THEOREM 4.5. Assume u ∈ W̊ 1
p (Ω) is the weak solution of the problem (3.1) and

a(x,ξ ) satisfies (3.2)–(3.4) and the (δ ,N)-BMO condition. Let N be a sufficiently big
number, Ω be the (δ ,N)-Reifenberg flat domain and let

|{x ∈ Ω : M(|∇u|p)(x) > cp
3}∩Br(y)| � ε|B2(y)|. (4.23)

Then for each y ∈ Ω and small r > 0 we get

Ω∩Br(y) ⊂ {x ∈ Ω : M(|∇u|p)(x) > 1}∪{x ∈ Ω : M(| f |p)(x) > δ p}. (4.24)

Proof. Let fix y ∈ Ω and 0 < r < 1. From Theorem 4.4 we get B8r(y) ⊂ Ω . Now
consider the case that there is a boundary point y0 ∈ ∂Ω such that y0 ∈ B8r(y) . We
assume contradiction. Then there exists a Br(y) in which conditions (4.23) and (4.24)
does not satisfy. Then for a point x0 ∈ Ω∩Br(y) and for all ρ > 0 we obtain∮

Ω∩Bρ (x0)
|∇u(x)|pdx � 1,

∮
Ω∩Bρ (x0)

| f (x)|pdx � δ p. (4.25)

Then for the point x0 ∈ Ω∩B9r(y0) with y0 ∈ ∂Ω we have

x0 ∈ Ω∩Br(y) ⊂ Ω∩B9r(y0). (4.26)

Recall that Ω is the (δ ,N)- Reifenberg flat and y0 ∈ ∂Ω . Then there exists a coordinate
system {z1, . . . ,zn} such that

y0 + δ rzn = 0, y = z , x0 = z0, Ω∩B9r(z) ⊂ Ω∩B10r(0) (4.27)

and
B+

Nr
(0) ⊂ BNr ∩Ω ⊂ BNr(0)∩{zn > −2Nδ r}. (4.28)

By (4.25)–(4.28) we conclude∣∣{z ∈ Ω : M(|∇u|p)(x) > cp
3

}∩B10r(0)
∣∣< (ε/10n)

∣∣B10r
∣∣= ε|Br|.

But (4.27) implies ∣∣{z ∈ Ω : M(|∇u|p)(x) > c3
p}∩Br(z)

∣∣< ε
∣∣Br
∣∣.
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This is contradiction to (4.23). Thus, the proof is complete. �
Now we ready to prove Theorem 4.3.

The proof Theorem 4.3. By a scaling Lemma 3.4 we take R = N and take λ large
so that ∣∣{x ∈ Ω : M(|∇uλ |p)(x) > c3

p

}∣∣< ε
∣∣B1
∣∣. (4.29)

From Theorem 4.5 by induction we have for all positive integer k .

|{x ∈ Ω : M(|∇u|p)(x) > cpk
3 }| <

k

∑
i=1

ε i
1|{x ∈ Ω : M(| f |p)(x) > δ pC2(k−i)

3 }|

+ εk
1 |{x ∈ Ω : M(|∇u|p)(x) > 1}|. (4.30)

From (4.30) we have
∞

∑
k=1

cpk
3 |x ∈ Ω : M(|∇uλ |p)(x) > cpk

3 | � ‖ fλ‖Mp,ϕ (Ω) + |Ω|
∞

∑
k=1

(cp
3ε1)k

� 1+‖ fλ‖Mp,ϕ (Ω)

∞

∑
k=1

(cp
3ε1)k

by Lemma 3.4. We choose δ small. Then cp
3ε1 < 1 and the series above is summable.

Then by Lemma 3.4 and Corollary 2.1 we have

∇u ∈ Mp,ϕ(Ω)

with the estimate
‖∇u‖Mp,ϕ � C(1+‖ f‖Mp,ϕ(Ω)),

where C = C(C0,C1,C2, p,n, |Ω|) .
Thus, the proof is complete. �
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