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Abstract. We study some properties between the lattice of all monotonic maps and the
lattice of all generalized topologies on a nonempty set. We present a covariant and
contravariant Galois connection between them. We also define the direct sum of two
monotonic maps and characterize the direct sum; and give an interesting lower and upper
bound for enlarging and restricting maps.
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1. Introduction and preliminaries

For the last one decade or so, the researchers are concerned with the
investigations of generalized topological spaces. A'. Csa’'sza'r [3, 4], using
monotonic maps from the family of all subsets of a nonempty set X to itself and
established some generalized topologies on X . The lattice of all generalized
topologies on a nonempty set was studied in [2]. In this paper we discuss some
properties between the lattice of all monotonic maps and the lattice of all
generalized topologies on a nonempty set.

Let X be a set and denote I'(X) the collection of all monotonic maps from

the power set p(X) into itself (i.e. Ac B implies YAc B for y eI'(X), where
we write yA for y(A)). According to [3], a set Ac X is said to be y -open iff
Ac yA and the collection u, of all y -open sets is a generalized topology (briefly
GT) in the sense of [4], i.e. e u, and any union of elements of 4, belongs to
4, . Similarly, for every y e I'(X) the collection 1z, ={A[y(X —A)c X — A} isa
GT on X . Conversely, according to [5], if x# is a GT on X and Ac X, then
i#A=U{M eu|Mc Al is a mapping i,:p(X)—> p(X) such that it is
monotone, idempotent and restricting, where y € I'(X) is said to be idempotent iff
yA=yA for Ac X, restricting iff yAc A for Ac X. Similarly, if
c,A= ﬂ{N |AcN,X =N ey}, then ¢, is again monotone and idempotent but
enlarging, where yel'(X) is said to be enlarging iff AcjyA for Ac X.
Moreover, i, and ¢, are conjugate, i.e. Ac X implies ¢,A=X —i, (X —A). We
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denote by I',(X) and I3, (X) the collection of all idempotent enlarging maps, and
the collection of all idempotent restricting maps in I'(X), respectively.

Let g(X) be the collection of all generalized topologies on X . According to
[2], (g(X),v,A,1,0) is a bounded lattice, neither distributive nor complemented,
where its join and meet in g(X) are defined by uvA={AUB|Ae y,Be i} and
UAA=unAd;and 1= p(X),0={D}. Let y,6 eI'(X). We say y is weaker than
of 6 if y<95,1e. AcCOA for Ac X . It is well known that (I'(X),v,A,1,0) is a
complete lattice, where the join and meet of y,0e€Il(X) are defined by
yVvOo(A)=yAUAA and y AS(A)= AN A for Ac X . The least and the greatest
elements 0,1 are maps y, and y, , respectively, where we denote by y,, the map
A=M for Ac X, see [7].

2. Galois connections

Recall that a (covariant) Galois connection between preordered classes S and
T is a pair (f,g) of order-preserving maps f:S—T and g:T — S with the

property that for all s€S and teT, g(t)<s iff t < f(s). The latter condition is
equivalent to: go f(s)<s forall seS and t< fog(t) forall teT, see[l, 6]. If
(f,g) is a Galois connection, then f preserves meets and g preserves joins.
Moreover, fog and gof are idempotent, g=gofog and f=fogof.
Dually, a contravariant Galois connection is a pair (f,g) of order-reversing maps
f:S—T and ¢g:T — S between preordered classes provided that for all se€S

and teT, s<g(t) iff t< f(S), or equivalently s<go f(s) for all seS and
t<fog(t) forall teT. Similarly, if (f,g) is a contravariant Galois connection,
then fog and go f areidempotent, g=gofog and f=fogof.

In this section we give a covariant and contravariant Galois connection
between the lattices g(X) and I'(X).

Lemma 1. Let ¢:g(X)—>T(X) and y :T'(X)—>g(X) be defined by ¢(u)=i,
and w(y)=u,. Then yop=id,y,, @ow <idy, and @,y are order-preserving,

where id is the identity map.
Proof. Let Heg(X). Then we have vop(u)=u, =
"

{AlAci, (A} ={A|Aeu;=u. Thus yop=id,y,. Suppose that yeI(X).
Then we have (ool//(}/):iﬂy. If Ac X, then iﬂy(A)=U{B|BgA,Be,u7}=
=| J(BIBS A Bc B} cyA. Therefore pow(y)<y and hence goy <idpy.
Now let <A1 in g(X). If AcX, then iu(A)=U{Be,u|AgB}g
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c U{B el|Bc Al =i,(A). Therefore i,<i, and hence ¢@(u)<¢(4) which
shows that ¢ is order-preserving . If 0<y in I'(X) and Aepu;, then
Ac OAc yA and hence A€y, . Therefore w(6)<w(y) which shows that y is
order-preserving.

Lemma 2. Let ¢':g(X) —>T'(X) and y":T(X)— g(X) be defined by ¢'(x)=c,
and y'(y)=u,. Then y'o@'=id,y,, @'oy'>idyy, and @'y’ are order-

reversing.
Proof. Let 1 €g(X). Then we have

Vo0 ()= T, = {AIC,(X —A)= X AL ={A| A=i, (A)} = p.

Thus y'o¢'=id,y,. Suppose that y e [(X). Then we have ¢'oy'(y)=c, . If
Y
AcX. then c; (A)=(|{B|AcB.X-Bef,}=(|{B|AcB,BCBiA.

Therefore @'oy'(y)>y and hence ¢ oy’>idpy,. Now let u<A in g(X). If
Ac X, then we have

c,(A=()BIAcB.X -Beu} o[ (BIACB.X -Bei}=c,(A).
Therefore ¢,>c, and hence ¢'(4)=¢'(4) which shows that ¢' is order-
reversing. If 6 <y in I'(X) and A€z, , then S(X -A)cy(X-A)c X - A and
hence A€ zi;. Therefore y'(0) 2 w'(y) which shows that y' is order-reversing.
Remark 1. Notice that since o =id,, and y'op'=id,,, so ¢ and ¢ are
injective,  and ' are surjective. Also Im(p)=T;(X) and Im(¢") =T, (X).
Therefore ¢@:g(X)—>I;(X) 1is an order-preserving isomorphism and
@' :g(X)>T,(X) is an order-reversing isomorphism, and hence the lattices
g(X), T;,(X) and T, (X)® are isomorphic, where T, (X)® is the dual lattice of
L (X).

Now by the previous Lemmas we have the following Theorem.
Theorem 1. (1) The pair (y,p) defined in Lemma 1, is a Galois connection

between the lattices g(X) and I'(X); (2) The pair (¢',¢") defined in Lemma 2, is
a contravariant Galois connection between the lattices g(X) and I'(X).

By the properties of Galois connections we have the following Theorem.
Theorem 2. (1) y preserves meets and ¢ preserves joins; (2) @ow and ¢ oy’
are order-preserving and idempotent maps on I'(X).

Corollary 1. Let {y,|kel} be a family of monotonic maps on X and
{1 |k eJ} beafamily of GTs on X . Then
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’Ll(mksl ) - kDI ’u7k ’

’u(ﬂkeJ ) - kDJ I#k ’

Proof. By Theorem 1, the result follows.
Recall that a closure operator on a preordered class S is an idempotent and

order-preserving map f:S—S such that idg < f, and a interior (or kernel)
operator on S is an idempotent and order-preserving map f:S — S such that
ids > f , see [6]. Therefore since poy <idy, and ¢'oy'>id,, by Theorem
2, we have the following Corollary:

Corollary 2. ¢'oy' is a closure operator and @oy is an interior operator on

r'(xy.
3. Lower and upper bounds

Clearly, a monotonic map y on p(X) is enlarging iff idy <y and it is
restricting iff  <id, . In this section we give an interesting lower and upper bound
for every enlarging and every restricting map in I'(X), which are unique with

respect to the idempotent property.

The following Proposition is an immediate consequence of the properties of
enlarging and restricting maps.

Proposition 1. Let 0,y e '(X) such that 6 <idy <y . then

(1) 1y ={A| A= A} and 7z, = p(X).
@), ={Aly(X=A)=X - A} and p, = p(X).
(3) us=m, iff y(X—A)=X-06A for each Ae . Therefore if y and o are
conjugate, then x5 =1, .
Theorem 3. Let y € I'(X) such that id, <y then
(1) There are idempotent maps y',7" €I['(X) such that idy <y'<y<y" and
yA=)A for Ac X.
(2) If there is nel'(X) such that »'<n<y and nyA=)A for Ac X, then
n=y.
(3) If there is 7 e [(X) such that y < <y” and n*> =7, then n=y".
(4) If y isidempotent, then y =y'=»"".
Proof. (1): We define ' as following:

yA=(\/BIACB}, (AcX).
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It is clear that »' is monotone and idy <y'<y. Since AcC A, so we have
y'YA=yA. To show that y' is idempotent, if Ac X, then A< yA and hence
yAc y'yA. Conversely, let xeyyA. Then xe B for every Bc X such that
yAcB. Since AcyA, so xe B for every B< X such that Ac B which
shows that xe yA. To find y", we define an ascending of monotonic maps, by
putting ' =y,y* =yoy

and for every limit ordinal £ . Thus we obtain a increasing sequence of maps

a-1

and »” “Vaep y“, for every successor ordinal «

o

7', 7%,---, the sequence stabilizes, so we have 7 ="' for some ordinal o . Now

"

we put " =y7, clearly, " is idempotent and y < y".

(2): Let n e'(X) such that y'<n<y and nyA=»A for Ac X .If Ac)B, then
nAc nyB=)B. Thus by the definition of y', 7Ac yA and hence 7 <y’ which
shows that n=y".

(3): Let 7 €T’ (X) such that  <n<y" and n* =7 . Then for every ordinal o we
have y* <n®=n.Thus y"=y° <np and hence n=y".

(4): By parts 2 and 3, the result follows.
Theorem 4. Let 5 eI'(X) such that 0 <idy . then

(1) There are idempotent maps o6',6"”" € '(X) such that 6"<6<6'<idy and
O0'0A=06A for Ac X .
(2) If there is 7eI'(X) such that §<7n <" and noA=056A for Ac X, then
n=o".
(3) If there is 7 e I(X) such that 5" <7 <& and n*> =7, then n=0"".
(4) If ¢ is idempotent, then 6 =6"=95"".
Proof. (1): We define &' as following:

A= JiB|B< AL (AcX).
It is clear that 6" is monotone and 6 <¢'<id, . Since SAcC A, so we have
0'0A=06A. To show that &' is idempotent, if Ac X, then SAc A and hence
0'0Ac 6A. Conversely, let xedA. Then XxedB for some Bc X such that
B c A. Since B=0B A, so xeB for some Bc X such that 0B < 5A
which shows that xe d'6’A. To find 6", we define an ascending of monotonic
maps, by putting 6' =8,6°=606°" and &” =V,;0%, for every successor
ordinal & and for every limit ordinal £ . Thus we obtain a decreasing sequence of
maps o 152, the sequence stabilizes, so we have §° =0 o* for some ordinal

o.Now we put 6" =067, clearly " is idempotent and 6" <¢.
The proofs of the parts 2, 3 and 4 are similar to Theorem 3.
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4  Complement and direct sum

Recall that x° e g(X) is said to be a complement of u if uv u® = p(X)
and u A u° ={D}. The complement of a GT x on X is not unique in general and

a characterization for the existence of complement was given in [2], that is, u°
exists iff for every nonempty set Ae u, there is X, € A such that {X,}eu.
Similarly, we say that y“eIl(X) is a complement of y if yvy® =y, and
YAV =7y

The following Theorem gives a characterization for the existence of a
complement of a monotonic map y and shows that the complement is unique.

Theorem 5. Let yel'(X). Then p° exists iff y=y, for some M cX.
Moreover, y° =y, ,, and y,y° are conjugate.

Proof. Let y eT'(X) such that y° exists. If Ac X, then JAUy°A=X and
ANy A=, and hence y°A=X —A. But we have yJ < jA and y* T < y°A.
Therefore yA= . Now if put #J=M , then yA=M for each subset A of X
and hence y=y, . Also we have y*A=X-)A=X-M, so y =y u-
Conversely, Let y =y, for some M < X . We define =y, . It is clear that
y° is the complement of y and y, y° are conjugate.

Corollary 2. If y e T(X) such that y° exists, then x , is a complement of K,
4
and x ; is a complement of z, .
4

Proof. Since y=y, and y°=py, , for some M c X. Then we have
i, =/7yc =p(M) and H =, =p(X—=M). Thus by Theorem 2.6 in [2], the
result holds.

Let p,A€g(X) such that every Ae p(X) can be uniquely expressed as a
union of a -open set and a A -open set, then o(X) is the direct sum of x# and A
and written p(X)= @ 4. A characterization for the direct sum of two GTs on X
was given in [2]. Similarly, Let y,0 €I'(X) be idempotent maps such that
idy =yvJ and y, =y A0 . Then we say that id, is the direct sum of y and &
and we write id, =y ® 0.

Theorem 6. If idy =y ® 5, then p(X)=pu, @ p;.
Proof. Let Aeu,np;. Then we have AcyANA=Q and hence
u, Y ps ={D} . Since y and o are idempotent, so A€ u, and SA€ u; for each
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subset A of X, and by assumption we have A=yAUJA. Thus po(X) =, v ;.
Now let A=BUC such that Beu, and Cep;. Then BB jyA and
C < & < 6A which shows that BNC =& . But we have A= AUA=BUC, so
yA=B and 0A=C . Therefore every subset A of X can be uniquely expressed as
aunion of a u, -open setand a ;-open set and hence p(X) =, @ p;.

The following Example shows that the converse of Theorem 6 need not be true.
Example 1. Let X ={a,b,c} and we define the monotonic maps y and & by

n=yict=0, y{a}=yfa,cy={a}, y{bj=y{b,c}={c}, r{a,b} =X ={a,c},
e &=, 6{a} =d{b} =5{a,b}={b}, s{c} ={c},

o{a,c}=0o{b,c} =X ={b,c}.
Then we have u, ={J,{a}} = p({a}) and u; ={9,{b},{c},{b,c}} = p({b,c}) and
hence p(X)=p, @ 5. But idy #y @, because y Ad({b,c})={c} and hence
YANO#Yy.

The following Theorem characterizes the direct sum of two monotonic maps.
Theorem 7. Let 7,6 e['(X). Then idy =y @ if and only if y=idy Ay, and

o=1idy Ayy_y forsome M < X .

Proof. Suppose y=idy Ay, and d=idy Ay, for some M < X . Clearly, y
and o are idempotent. If Ac X, then A=(ANM)U(AN(X -M))=AUNA
and JANSA=(J, and hence idy, =y @ 5. Conversely, suppose that idy, =y @0 .
Then by Theorem 6, we have p(X)= u, ® p;, and hence by Theorem 2.15 in [2],
u, = p(M) and Us =p(X=M) for some McX. Thus
{A|Ac AL ={A|AcM} and {A|AcCA}={A|Ac X -M}. Now if Ac X,
then by assumption we have yAc A and jAe i, ,s0 JAc ANM =idy Ayy (A).
But AnMepM), so AnMcy(AnM)cyA. Therefore we have
y=I1dy Ay, . Similarly, we have d =idy Ayy_y -

Theorem 8. Let y,6 €[ (X) . Then idy =y @& if and only if p(X)= 1, ® u;.
Proof. If idy =y ® ¢, then by Theorem 6, we have p(X)= u, @ p;. Conversely,
suppose that p(X) =, @ p;. Then by Theorem 2.15 in [2], we have u, = p(M)
and uz;=p(X -M) for some M < X . Since y is idempotent and restricting if
Ac X, then we have yAc A and yAepu,, so YA AnM =idy Ay (A). But
AnMep(M), so AnM cy(AnM)cyA. Therefore we have y=idy Ay, .

Similarly, we have 6 =idy Ayy_y and hence by Theorem 7, the result follows.
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Monoton inikas vo iimumilasmis topoloqiya
sabakalori haqqinda

Hasem Mirhasenxani

XULASO

Isdo monoton inikasmn sobokolori vo bos olmayan coxluglar {izerindo biitiin
imumilogmis topologiyalar arasindaki miinasibatlori 6yranilir. Onlar arasinda kovariant vo
kontravariant Kalois slagalari tosvir edilir. Homg¢inin iki monoton inikasin diiz camini toyin
edirik vo bu comin xarakteristikasini vo ilnikasin genislonmosi vo mohdudlugunun yuxari
va asagi1 sorhadloni verilir.

Acar sozlor: iimumilogmis topologiya, monoton inikas , soboko.

O pemeTkax MOHOTOHHBIX 0TOOPAKEHUH U
000011IeHHBIX TOMOJIOT M

I'amem MupxoceiiHXaHu

PE3IOME

MBI H3y4aeM HEKOTOPBIC OTHOIICHHS MEXKIY PEIIeTKAMU MOHOTOHHBIX OTOOpaKeHUH
U Bcex OOOOIICHHBIX TOMOJOTHH TIO0 HEMYCTBIX MHOXECTB. MBI TIpEICTaBIIsIEM
KOBapHUaHTHBIC M KOHTpaBapHaHTHBIC Kanouc cBsa3u Mexxy HUMUA. MBI TakkKe ONpe/elisieM
MPSMYIO CYMMY JIBYX MOHOTOHHBIX OTOOPXEHHI M XapaKTEPU3UPYEM ITY CYMMY, JaeM
WHTEPECHbIC HWKHIOID M BEPXHIOK TPAHUIly  JUIS DPACHIMPEHHS W OrpPaHUYCHHS
0TOOpaKEHHH.

KiaioueBble ciioBa: 0000mIeHHas TOMNONOTHS, MOHOTOHHYECKOE OTOOpa)KeHHE,
perierka.
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