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1. Introduction

In this paper we will consider the initial-boundary value problem for a
parabolic equation with a polynomial non-linearity relative to the unknown
function u(x,t)

ux.t) aAu(x,t) +cu(x,t) = f(u),

where f(u)= Zan (x,t)u" (x,t). Theorems on the existence of solution for
n=0

nonlinear equation are given in [3], [7]. The method of statistical modeling for
solving the initial-boundary value problem for a linear equation are considered in
[1] and also the case, when the right-hand side is a finite series, was given in [2],
[9]. The representation of the solution this problem in that work is given in the
form of a mathematical expectation, which are determined based on trajectories of
branching processes. Further, in this paper some results of the above mentioned
work would be used to derive probabilistic representation for our problem.

In the present paper under the assumption of the existence of the solution, an
unbiased estimator is built using trajectories of a branching process. We will use a
theorem of mean value to write out a special integral equation, that equates the
value of function u(X,t) with its integral over a spheroid and balloid with center at

the point (X,t). A probabilistic representation of the solution to the problem in the
form of mathematical expectation of some random variables is obtained. This
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probabilistic representation uses branching process whose trajectories are used in
the construction unbiased estimator for the solution. The derived unbiased
estimator has finite variance, and is built up from trajectories of branching
processes with a finite average number of branches.

2. Description of the problem

Let D be a bounded domain in R™ with boundary 6D and Q= Dx[O,T] isa
cylinder in R™'. The following relations define functions Y,(X)e C(E),
yoxt)eC(@x[0,T]), fxteC(@Q), a,(xt)eC(Q) (n=0.12,...) and the
coefficientsis a>0, ¢>0.

Let's consider the initial-boundary value problem for the following parabolic
equation for (X,t)eQ:

ou(x,t)
ot

—aAu(x,t)+cu(x,t) = > a, (x,Hu" (x,b), (1)
n=0
with the initial and boundary conditions:

u(x,t)=y(xt), xedbd, telo,T],
{u(x,O) =Y,(X), xeD.

Assume functions a,(X,t), Y,(X), y(X,t) and coefficients a, C are such that
there exists a unique continuous solution of this nonlinear problem
ux.teC(d x[0,T)~C> (D x[0.T]) (B3], p-201, [7], p.556). Relative to the
functions a,(x,t), (n=0,1,2,...) we will make the following assumptions:

sup |an(x,t) <a,,
(x,D)eQ

2)

and
Dak <o, 3)
k=0

The purpose of this paper is to derive unbiased Monte Carlo estimators for
solving the problem (1)-(2) with finite variance at some arbitrary point (x,t) € Q.

3. Integral representation of the solution

The basis for building the derived unbiased estimators will be the formula for
the "parabolic mean" used in solving the heat equation. Various equations for the
mean of parabolic equations were considered in [5], [6]. With the help of the
fundamental solution, and Green's formula, we can transform this differential
equations into an integral equations. In doing so we apply the results of lemma 3.1
([10], p.106). We will obtain a special mean equation which equates the value of
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the function u(x,t) with its integral over a "balloid" and its surface with center at
the point (X,1t).

As is known, the fundamental solution, Z(x,t;y,7), of the heat equation
U, —aAu=0 is

2

Let Z,(X,t;Y,7)=Z(X.t;y,7) — (47ar)"™*. With the help of this fundamental
solution, we define the family of domains Q, (X,t), which depend on the parameter
r >0 and the point (x,t)e R™", as

QD ={(y.0) Z(xt:y.0) > (4mar) ™,z <t}

2
Let (x,t)eQ, r=r(x,t)=min{R (e
2am

,t} , where R(X) is the distance from

,X€dD,x' €D} In this
case Q,(x,t)e Q. Applying the results of lemma 3.1 [10] for equation (1), we

X to the boundary of the domain 6D : R(x)=inf ﬂx -x'

obtain the following integral representation:

uxn=af | (1—t”j[—az(x’t;y’T)Ju(y,r)dsdH
Q. (x;t)

r on y
(4)

[ [ zectyuty.odyde + F (),
r Qy(x.b)
where

Fo = [ r-0-0)Z,(xty.0 fury. )y,
Q(x.)

fu(x,t)) = ian (x,tu"(x,1).
n=0

To obtain a probabilistic representation, we will consider these expressions in
detail.

4. Probabilistic representation of the solution
To derive the probabilistic representation of the solution to our problem we

will represent each term in (4) as the mathematical expectation of some random
variable. Let's consider each term in the integral representation separately
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- 0Z(X,t;y,
|1(X,t):aj I [1_ rr)[_ (GHYT)
aQ, (x)

y
We will make a transformation similar to transformations in the following way.
We will parameterize the surface 0Q,(X,t) with the help of the parameter

]u(y,r)dsd 7.

pe(O,oo) and unit vectors WeS,(0) in the following manner. We will first
transform to the polar coordinates, Yy =X+ R(t—7). In doing this, we make a

. m. r
change of variables 7, =t —7, then p= Eln— , and as a result we have
O

| = (=ay)[a(p)dp [ @y (w)u(y(p,w),7(p))ds = (1- 0, EU(Y(E,@).7(£)),

0 $,(0)
Here
q, = (1+2/m)~0m2),

-1
a(p)=p™ exp(—p)(l - exp(— %D{( 1-q, )F(l + %D :

=L - D).

m

y(p,w) and 7(p) are determined by the following formulas

y(p, )= X+ \/4rpaexp(— %0) o, 5)

r(p)=t—rexp[—%p} ©)

and the random variable &, is distributed with the probability density 0,(p), @ is
a random point on the surface, S,(0), and has density g,(w), S,(0) is the unit
sphere, ds is the surface element, o, is the area of unit sphere, and I'(.) is the
Gamma function.
Let's consider following terms
Iz(x,t)=%j [ z.octy.ou@y.odyde,
Q(xb)

LoD =] [ (== Z, .0 TGy )dyd
Q(x.)
We transform to polar of coordinates y =X+ pw, and in doing so make a few
changes of variables such as
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W
r,=t-17; p= f2mrlaln[z_—} 7, = Aw;
1

w=rv¥"  A=exp| - z_|\
1+m/2

Thus we obtain

Iz(xat) = qu(l —Ic (1 - VZ/m exp(— mzflz J\JJu(y] (4:1 5‘/’60)51-] (éfl ’V))a

Lo6H =1, fa, ) fa, @) %(w)[l—v““ exp( — D
0

0 S0 m+2

x f(u(y, (z,v,w),7,(z,v)))dsdzdv =

=rq, E{(l —ypam eXp(%jJ f (U(yl &1,V 0),71(&)5 V)))},

(1-vyv™ . .. . .
where (,(V)=-———— 1is the probability density function of the Beta
B(2,2/m)
Ly Mm2-l
distribution with parameters (2,2/m); B(.,.) - Beta function; q,(z) =%
m

is the density of the Gamma distribution with parameter (m/2) and o is an
isotropic vector. Then

12
Y, (&, 0) = X+ ( m4-T2 ragy>" exp(— %D o, (7)
r,(&,v)=t—ry?" exp(— i} 8)
m+2

Here &, is a random variable with density q,(z), and v is a random variable with
density q;(Vv) . Thus, we have:

u(x,t) = (1- g, Eu(y(&,@),7(&))+ g, x
X E(l - rc[l —yp¥m exp[— i]}ju(yl (&.v,0),7,(&,V))+
m+2

+q, FE(I - Vz/m eXP(— %)j f (u(yl (fl sV, C()), 7 (51 ) V)))’ (9)

where y(&,w), 7(£) are determined by formulas (5)-(6), and Y, (&,,v,®), 7(&,V)
are determined by formulas (7)-(8).
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_JeR*(x) 1 — . :
Let r=r(x,t)=mln{e2 ( ),t,—}, then Q,(X,t)eQ and at a given point
ma C

(x,1), the functions

pl (Xat; y’T) =

(1_I‘Tj
r oz X’t’ ,
1-q (— (anyf)jlaq”x’“(y’f)’
y
(1= (r=(t-o)c)Z, (x.t;y,7)
rqm(l—rqlmc)
r

m

m

pZ(Xat;y’T) = IQr(X,t)(yaT):

Py (X, Ly, 7) = IQr(x,t)(yaT)a

1+m/2
are the densities of distributions in Q, (x,t). Here q, =1—%{m+ij . Let
m+

(Y,,7,) be a random point of the balloid Q,(X,t), at the fixed (X,t), where
(y,,7,) is distributed with a density p,(X,t;y,7), then in expression (9) the
second term can be substituted with

0= 000z, (v, 0u( Dy = G (1 o) EU(y, 7).
Qp(x.t)
Thus, the following probabilistic representation of the solution to the problem
is valid.
Theorem 1. For finding the solution of the problem (1)-(2) the following
probabilistic representation is valid:

u(x,t) = (1= G EU(Y(&, @), 7(&))+ Uy (1= 1c )EU(Y,, 75) +

+qmrE((l—v2/m exp[—%ﬁf(um (&v,0),7,(8.1)) (10)

We use the following notation
(Yy,7) = (Y(f,w),‘f(f)); (¥3.73) = ¥1(&, v, 0),7,(&),V);
a; =1-0y; @, =0q,(1-rcq,); & =rcqndy.
Here a, +a, +a; =1.
After substituting this notations, the expression (10) will take the form
u(x,t)y=a,Eu(y,, 7)) + a,Eu(y,,7,) +

+0{3E(1—V2/m exp(_ 25 jj f(U(y3,T3))‘ (11)
m+2 Cim

So, theorem 1 gives us a representation of the solution to the problem (1)-(2)
in the form of a mathematical expectation of some random variables. Thus makes it
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possible to finding the solution by using a simulation of these random variables on
the trajectories of branching random processes.

When applying the methods of Monte Carlo for the solution of the derived
equations, the convergence of the iterative method was assumed. We can show,
under what conditions the nonlinear integral operator, F(u), in expression (11),

which determined below, is a contraction operator and has a fixed point. (see [10],
p-156).

5. Constructing branching random processes

In accordance with representation (11), we will construct a random process in
the space Q. Let

eR2(x) tl} (12)

r= r(X,t)—min{ L=
2ma ¢

We will determine a random branching process in €2 corresponding to the

probabilistic representation in the following way. Let M = Z:na_n ,and « be a real
n=1
number so that 0 <a <1. (Further conditions on & will be specified).

Suppose we have a particle initially at the point (X,,t;)=(X,t). Let n>0 and
assume (X,,t,) be known. For a one step transition the particle moves with
probability «; to the point (X,,,t,,;)=(Y;,7;), which is distributed with
probability density p;(Y,7;X,.t,). If the particle moves to the point (Y,,7;), then

here, with probability 7, =ﬁ§n (n=1,2,---), the particle divides into n new

particles. The probability of absorption at (y;,7;) is equal to 7, =1— Zﬂ'n . A new
n=1
particles behaves independently from the others (similar to the original).

This process will terminate if all particles absorbed in Q , or if all particles get
to 0C). The parameter ¢ allows us to regulate the number of branches: the smaller
a the fewer of branches in the process.

The sequence of coordinates of the particle is determined in the following way

1. If the probability density of the point (X,,;,t,,;) is equal to p,(X,.t,;Y,7)

at a fixed (X,,t,), then (X,,;,t,,,) will be given by

Xopr =Xy + 2(r(xn ’tn )é:n a)l/2 exp(_ é:_nja)n ’
" (13)

2¢
tn-f-l = tn - r(xn ’tn )GXp(— : ja

m
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where { n}io and {a)n }::0 are sequences of independent random variables with
probability densities @,(p), and independent isotropic vectors respectively.
r(x,,t,) is determined by formula (12).

2. If the probability density of the point (X,,,t,,;) is equal to p,(X,,t,;y,7) ata
fixed (X,,t,), then

12
m 28
Xnpr = Xp t 2a)n (mr(xn ,tn)gn (Vn)Z/m aexp(_ m—f_nzjj 5

2 ’
tn+] = tn - r(xn ’tn )(Vr’1 )2/m exp[— gn ja (14)
m+2

where {fr'] }:O:O, and {v; }:O:O are sequences of independent random variables,

obtained using the following algorithm (the Neumann acceptance-rejection
method):

The details of the rejection algorithm go as follows.

A. Simulate £ as a Gamma distributed random variable with parameter (m/2),
y 1is uniformly distributed in the unit interval (0,1), v a Beta distributed random

variable with parameters (2,2/m);

B. If 7>1—Cr(1—v2/m exp{— 29&2)} then we reject and return to A.,
m+

otherwise v'=v, &'=¢&.
3. If the density of the point (X,,;,t,,;) is equal to p;(X,,t,;y,7) at a fixed point

(X,t,) , then
12
28
r(Xn atn )gn Vr?/m aexp(_ m—_i_anJ 5

2
trH—l :tn - r(xn 9tn )Vﬁ/m exp[— ija

Xn =X, 20 ( m
n+l — “n n
m+2
(15)
m+2
where {cfn }:10:0 and {vn }:10:0 are sequences of independent Gamma distributed
random variables with parameter (m/2) and Beta distributed random variables with
parameters (2,2/m) respectively. {a)n }::0 are independent isotropic vectors.
Let T, =(x,t,1),T,,T,,...,T;,... is a trajectory of a branching process, where
T, = (Lt k2 2,02 oxi Lt i

is a point distribution at time step 1. The case |; =0 corresponds to the absence of

particles in Q. Such a point distribution is called zero and is denoted by 6. A
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point distribution T; may be interpreted in the following way: for i =1,2,... ateach

point (XI N 1) there are nJ number of particles (j = 12,1 i)
Lemma 1. A branching process {Ti} with probablhty one terminated in the
domain Q, or converges to the point distribution
T =ttt 5 xE E4, N,
where (x),tHedQ, (j=12,...,k).
Proof. The process can be considered as a branching diffusion process for the

particles that are diffusing in the bounded domain Q with absorbing boundaries. If
the average number of particles, which generate one particle for the one step is
K <1, then the constructed process is absorbed with probability 1, and the
condition K <1 is a necessary and sufficient condition for the average number of
the branches of the process to be finite. Let's show that for the process, which was
described above, K <1. In accordance with our suggestions, the series

M = Znﬁ <o converges. We will fix 0 <a <1. Taking into consideration that

n=0
Ty = % we find that
K

e [0t Y00+ [ Oy, [ (3. 30

o)

S A~
=a,+a, +a3Zn7rn =a,+a, +a, —Z:nan <1.
n=1 n=1
Thus, the current process terminates and the general number of particles, which
took part in the process, is finite [4]. If the process does not terminate inside Q,
then starting at some time all the particles go to the boundary, 6Q . There exists a

n=n,, so that starting at T, that has the following form,
T= (xn,tn,l,x tn,l, X'n‘,t:f,l) where k does not depend on n. Further, all of
the k particles independently transfer from the points (Xn, n) to the point
(x!.,,t! ). The coordinates of these points are determined either by formula (13),
or by formula (14). We will show that (x.,t)— (x!.,t!)edQ when n—w,

i=1,2,...,k almost surely. The sequences {tr', }:‘O:”o are decreases and tr'1 >0, so, it

~

has as n—oo a limit t' =]jmt' exists. Let 3, be a o- algebra, which was

n—oo
. . i i i . r ' i
generated with random variables fn , §n0+1, oo fnom, (6”0)" (‘fnoﬂ)', s
(5 ) ( ) (v’ 1), e (v' ) and vectors a) , @ s eees N It is
n0+n nO n0+ n0+n n0+ n0+n
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obvious, that coordinates of the vector process {Xr'] }w

', form bounded martingales
0

~

relative to {\sn}:zl. This is why the coordinates, and the process {X:] }:‘:”0 itself

converge with probability one. If t. =0, then it is obvious that (x.,t')edQ . Let's

00 2 "0

suppose t' > 0. As far as the process converges, then
_ i i
E = const E(XLOJLO) NrX,th) —0.

Applying Lebesgue's theorems about bounded convergence, we obtain

E g g o)) =0

Thus r(x.,t')=0 almost surely. Then from the definition for r(x,t) via

00 9 To0

i J—
n+l1

X =x

o b
LR

formula (12), we obtain R(x.)=0, i.e. (x.,t')edQ, and the lemma has been

proven.
Further, we will give a recurrence formula for the average number of particles
in the n-th generation. Let |,(y,7) be the indicator of set Ae Q. Let's define

K((X,t), A)= ExyTi(A) as the average number of particles of the first generation,
which are in the set A. Let dK((X,t),(y,Z')) means that differential is taken from
the second argument. K, ((x,t),A)=K((x,t),A) K,((x,t),A)=1, if (x,t)e A and
KO((X,t), A):O, if (x,t)e A. Then for the average number of particles in the
(n+1) -st generation, which will be in A, obeys the following recurrence:

Ko (060, A)= [K, ((5,2), A)IK (0,0, (v, 7)) =

= jK((y,f), A)K, (x,1),(y,7)), n=1.2,....
Q

The process T,,T,,T,,...,T,,... has K((X,t),§)= K . Here K((x,t),ﬁ) is the
average number of particles in the first generation or the average number of
particles which arise from one particle, Kn((x,t),ﬁ) is the average number of

particles in n-th generation. From the recurrence it follows, that if K((X,t),§)< b
(b=const), then K,(x,D)<b". For the process T,,T;,T,,...,T,,..., will be K <1
and we thus have K ((X,t),§)< 1.

In the next section we will construct an unbiased estimator of the solution of
problem (1)-(2) using branching processes trajectories.
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6. Construction of unbiased and ¢ -biased estimators of the solution

We will give the sequence of estimators {{ K (X,t)}f:0 with the following
recurrence. Let £ (X,t) =u(x,t), & (X,t)=Y¥ (S, (X,t)), where

¢(y,7), in the case 1.
P =W, (V. D] [¢ P (y.7), in the case 2. (16)
i1
Wo(yJ)M, in the case 3.
Ty

Case L. If (x,1) = (y,7) = {(¥,,7)0r (¥,,7,)};
Case 2. If (X,t) = (Y,7) =(Y;,75) and particle is generated, n# 0 ;
Case 3. If (X,t) > (Y,7) =(Y;,7;) and particle is absorbed.

Here ¢V (y,7) are independent realizations of the estimators ¢ (Y,7).

So called "weights", i.e. multipliers, are multiplied by the estimator at each
step, and are determine in the following way:

W, (y,7)= (1 —ym exp(— mzfzj}

Ma,(y,7)

an (a - qlm) ,
where & is a Gamma distributed random variable with parameter (m/2), v is Beta

(17)
Wn(y7 T) :Wo(y» T)

distributed random variable with parameter (2,2/m), which is used to determine

the point (Y;,7;) = (y1 (&,v,m),1, (5,1/)) by formulas (7)-(8).

Let R, be a o -algebra which generated by the sequence T, =(x,t), T,, ...,
T, -... The following statement is valid.
Theorem 2. The sequence {{, (X)), forms a martingale on {R,}" . If
M <cq,,, then &, (X,t) is a uniformly integrable martingale.
Proof. By definition, J(X,t) is R, measurable. From the properties of
conditional expectation and formulas (16)-(17) we get

E(Cna O6DIR, )= E(P(£, (D) R, )=, ES, (v,,7) +
+azE§n(yz,Tz)+asz”i EWi(y3’T3)Hé/r(]j)(y3’73) =
i=1 j=1

=aEQ (Y, 1)+, EQ (Y,,7,) +
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+a3iE[l—V2/m€Xp(— 20 ]Jai(y3573)§ri1(y3>73)
i=1

m+2 Cim
Using the probabilistic representation (11) it follows that

E(CnnOGt/R,) = EC, (Y1, 7) + 0, EL (Y,,75) +

+(Z3E(1—V2/m exp(_ 25 jJ f(é/n(waS)) — é/n(x,t)-

m+2 Cim

Thus, the sequence {é’ P (X,'[)}f:0 forms a martingale on {iRk}f:O. For proving
<C,

that &, (X,t) is uniformly integrable it's enough to show that |g” (X, 1)

(C =const). Let the parameter & be chosen from the condition <a<l.

COinm
Since

u(x,tyeC(D x[0,T)~C> (D x[0.T))

and Q is a bounded domain, then |u(x,t) <const for (x,t)e Q.

Further [\No(y,r)|=‘l—v2/m exp(— 2 j

m+2

<1, and taking into account the

Ma,(y.7)

conditions of the theorem, [\Nn (y,f)| = '\No(y,r) — <l1.

a,acqy,

Finally, from here we obtain |¢,(X,t)

<C <o, (C=const). It follows that
the sequence {{ N (X,t)} is uniformly integrable, and theorem has been proven.

Further, using the estimator ¢, (X,t), we will build a biased estimator which is

easy implementable on a computer programs.
We will take ¢ sufficiently small, and will consider the & - neighbourhood of

the boundary:
(022), = {Px[o.eJfu{(@p), x[0.T];
Let N, be the time index of the absorption of the process inside the domain,
and N, the time index of first passage in (AQ),. Then N =min{N,,N,} is the

stopping time of the process. Then the probability of absorption of a trajectory at a
point will be equal to:

Lo ()t €(09),
g (Xn atn ) = H N
7y, (iF)(X,,t,) € Q\(0Q),
From lemma 1 it follows that N <oo.
Theorem 3. Let us the conditions of theorem 2 be satisfied. Then £ (X,t) is an
unbiased estimator for u(x,t) with finite variance.
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Proof. Since {,(X,t) is a uniformly integrable martingale, and N is a Markov
time, then by Doobs optional sampling theorem [8] for the martingale {4’ K (X,t)}fzo ,
we get EJ (X,1)=EJ,(X,t). By definition &,(X,t), the formulas (16)-(17), and

the probabilistic representation it follows that
E (&, (%)= a,Eu(y,,7,) + a,Eu(y,,7,) +

+ a3EK1 —ypm exp(— mzf2D f (u((:;/3,r3 ))} =Uu(X,t).

In accordance with the conditions of theorem 2 E(¢ (x,1))’ <o and thus it's

variance is finite. The theorem has been proven.
Further, by using ¢\ (X,t) we will build a biased, but practically

implementable estimator £y (X,t) in the following way.

Let ®(x,t)=y(x,t) when xeaD, te[0,T] and ®(x,0)=y,(X) when xeD,
(x*,t7) is the closest point to the bound 6Q . £y (x,t) is obtained by substituting
u(Xy,ty) into &y (x,t) along CD(X’,; iy ) Let's estimate the bias in ¢y (x,t). It's
clear that
<E

|E§N (Xst)_u(xat) é/;\kl (Xat)_é/N (th)'
If N=N,, then Ty ={@} and the process is terminates without hitting (6Q2), . In
this case ¢y (X,t) =< (X,t) and the bias is equal to the zero. If N = N, , then

— 1 1 1.2 2 2., vk k k
TN_(XN’tN9nN>XN9tN,nN9'--,XN9tN,nN)>

where (Xh,tiN)eéQ, i=1,2,...,k. and the number k does not depend on N .
Taking into account that [\Nn(y,r)| <1 for arbitrary n, and (y,7)eQ , we have

G-y <| T TRl T - Thulodr )|
i-1 i-1

Let L(&) be the absolute value of continuity of the function u(x,t), then the
following is valid
ECixh-u(xt] < L()E) +nF +-+nf)
Since the average number of particles in the N -th generation is
E(nlN +n} +~-+nk,)= Ky (x,t;Q)<1
(see section 4), we will find, that, the bias doesn't exceed L(¢). Finiteness of the

variance follows from [\Nn(y,z')| <1.
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Following cases f(u)=gexp(u), f(u)=gcos(u), f(u)=gsinh(u),
f(u)=gcosh(u) (g is constant), have been in detail considered in [10] and the
corresponding branching probabilities have been obtained.

o

10.
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Qeyri-xatti parabolik tanlik ii¢iin qoyulmus baslangic-sarhad masalasinin
statistik modellasma iisulu ilo hoalli

S. Formanov, A. Rasulov, Q. Raimova
XULASO

Isdo mochul funksiyaya nozoran polinomial qeyri-xatti olan parabolik tenlik iiciin
baslangic-sorhod mosalosine baxilir. Bu mosalonin  hollinin ifadesi riyazi goézlomo
formasinda verilir. Sonra malum naticolordon istifado edorok baxilan masslonin ehtimal
dilinds ifadesi verilir.

Acar sozlar: baslangic serhad masalesi, parabolik tonlik,statistik modellosma iisulu.

Pemenne HayaabHO-KpPaeBoOil 3a/1a4U 1JI1 HEJIMHEHHOT0 Napado1u4ecKoro
YPaBHEHHS] METOI0M CTATHYECKOT0 MOEJTMPOBAHUS

III. ®opmanos, A. Pacynos, I'. PaumoBa
PE3IOME

B pabote paccmarpuBaeTcss HadaJbHO-KpaeBas 3agada il apabOIH4ecKOro
yYpaBHEHHS C TMOJMHOMHHAJIBHON OTHOCHUTEIHFHO HEM3BECTHOW (DYHKIIMHM HEITUHEWHOCTHIO.
[IpencrapneHue pelieHus] JaHHOW 3aavd JaeTcs B (OpMEe MAaTEMaTHYSCKOTO OXKHIAHUS.
Hanee ucnonb3ysi U3BECTHBIE PE3YJbTAThI, BHIBEICHO BEPOATHOCTHOE IMPEICTABICHHUE IS
JAHHOU 3aJa4u.

KiroueBsble c10Ba: HadalbHO-KpacBas 3a7ada, mapaboJIMuecKoe YpaBHEHHE, METO.
CTaTUIECKOTO MOACTHPOBAHUS.
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