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AFFINE FACTORABLE SURFACES IN ISOTROPIC SPACES

MUHITTIN EVREN AYDIN1, AYLA ERDUR2, MAHMUT ERGUT2

Abstract. In this paper, we study the problem of finding affine factorable surfaces in a 3−
dimensional isotropic space I3 with prescribed Gaussian (K) or mean (H) curvatures. Because

the absolute figure of I3, by permutation of coordinates two different types of these surfaces

appear. We firstly classify the affine factorable surfaces of type 1 with K,H constants. After-

wards, we provide the affine factorable surfaces of type 2 with K = const. or H = 0. Besides in

some particular cases, the affine factorable surfaces of type 2 with H = const were obtained.
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1. Introduction

Let R3 be a 3-dimensional Euclidean space with usual coordinates (x, y, z) and

w : R2 → R, (x, y) 7→, w (x, y)

a smooth real-valued function of 2 variables. Then, the graph z = w (x, y) is a smooth surface

with an atlas that only consists of the following patch

r : R2 → R3, (x, y) 7→ (x, y, w (x, y)) .

Notice that every surface in R3 is locally a part of the graph z = w (x, y) if its normal is

not parallel to the xy−plane. Otherwise, the regularity assures that it is a part of the graph

x = w (y, z) or y = w (x, z) . See [37, p. 119]. These graphs are also called surfaces of Monge

type [17, p. 302].

In the differential geometry of surfaces, one of the challenging problems has been to obtain

explicit equations of surfaces with prescribed Gaussian (K) or mean (H) curvatures. In this

manner, it is naturally reasonable to concern the graphs. For a graph, a problem of this kind is

indeed to solve an equation of Monge-Ampère type given by ([39, 42])

wxxwyy − w2
xy = K (x, y)W 2, (1)

and an equation of mean curvature type ([27, 39])(
1 + w2

x

)
wyy − 2wxwywxy +

(
1 + w2

y

)
wxx = 2H (x, y)W

3
2 , (2)

where wx = ∂w
∂x , wxx = ∂2w

∂x2 , etc. and W = 1 + w2
x + w2

y.

The equations (1) and (2) also arise in economics, meteorology, oceanography etc. [7, 8, 9, 11].

In a 3-dimensional isotropic space I3, by separation of variables we study the graphs

z = w (x, y) = f1 (x) f2 (y) ,
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so-called factorable or homothetical surfaces. Here f1 and f2 are smooth functions of a single

variable. Many results on the factorable surfaces in other 3-dimensional spaces were obtained

so far, see [1-4, 18, 20, 25, 28, 43, 48].

This kind of surfaces also appears as invariant surfaces in the 3-dimensional space H2 × R
which is one of the eight homogeneous geometries of Thurston. More clearly, a certain type of

translation surfaces in H2 × R is the graph of z = f1 (x) f2 (y) , see [45, p. 1547]. For further

details, we refer to [5, 6, 19, 22-27, 32, 41, 46, 47].

Recently, Zong et al. [49] defined affine factorable surfaces in R3 as the graphs

z = f1 (x) f2 (y + ax) , a ∈ R, a ̸= 0.

They obtained these surfaces with K = 0 and H = const. It is clear that this class of surfaces

is more general than the factorable surfaces.

In this paper, the problem of determining affine factorable surfaces in I3 with K or H con-

stant is considered. Because the absolute figure of I3 (for details see Preliminaries section), by

permutation of the coordinates two different types of these surfaces exist, i.e. the graphs of

z = f1 (x) f2 (y + ax) and x = f1 (y + az) f2 (z) .

We call the surfaces affine factorable surfaces of type 1 and 2, respectively. Point out also that

such surfaces reduce to the factorable surfaces in I3 when a = 0.

In this sense, our first concern is to obtain affine factorable surfaces of type 1 with K or H

constant. And then, we present some results relating to the affine factorable surfaces of type 2

with K = const. or H = 0. Furthermore, in some particular cases, the affine factorable surfaces

of type 2 with H = const. were found.

2. Preliminaries

In this section, we provide some fundamental properties of isotropic geometry from [10, 12-16,

29-33, 35, 36, 38, 49]. For basics of Cayley-Klein geometries see also [21, 34, 44].

Let (x0 : x1 : x2 : x3) denote the homogenous coordinates in a 3-dimensional real projective

space P
(
R3
)
. A 3-dimensional isotropic space I3 is a Cayley-Klein space defined in P

(
R3
)
with

the absolute figure {ω, l1, l2} , where ω is an absolute plane and l1, l2 two absolute lines in ω.

These are respectively parameterized by x0 = 0 and x0 = x1 ± ix2 = 0. The intersection point

of these complex-conjugate lines is called absolute point, (0 : 0 : 0 : 1) .

The group of motions of I3, which leave the absolute figure invariant, is given by the 6−
parameter group

(x, y, z) 7−→ (x̃, ỹ, z̃) :


x̃ = θ1 + x cos θ − y sin θ,

ỹ = θ2 + x sin θ + y cos θ,

z̃ = θ3 + θ4x+ θ5y + z,

(3)

where (x, y, z) denote the affine coordinates and θ, θ1, ..., θ5 ∈ R. The isotropic metric induced

by the absolute figure is given by ds2 = dx2 + dy2.

Due to the absolute figure there are two types of lines and planes: the isotropic lines and

planes which are parallel to z− axis and others called non-isotropic lines and planes. As an

example the equation ax + by + cz = d determines a non-isotropic (isotropic) plane if c ̸= 0

(c = 0), a, b, c, d ∈ R.
Note that the plane z = 0, so-called basic (or top-view) plane , is non-isotropic (or Euclidean)

and therefore the 2d Euclidean metric is used in it.

Two non-isotropic lines are orthogonal if their projections onto the top-view plane are per-

pendicular up to the Euclidean metric. Nevertheless, an isotropic line is orthogonal to some
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non-isotropic line. As a consequence, each non-isotropic plane is orthogonal to the isotropic

one. Besides, two isotropic planes are orthogonal if their projections onto the top-view plane

are perpendicular.

A surface is said to be admissible if nowhere it has isotropic tangent planes. If some admissible

surface is locally parameterized by

r (u, v) = (x (u, v) , y (u, v) , z (u, v)) ,

then the Jacobian determinant satisfies

∂ (x, y)

∂ (u, v)
= xuyv − xvyu ̸= 0,

where xu = ∂x
∂u , etc.

We may introduce an isotropic scalar product between two vectors u = (u1, u2, u3) and

v = (v1, v2, v3) as

⟨u,v⟩i = ũ · ṽ =u1v1 + u2v2,

where ũ denotes the top view of u and · the Euclidean scalar product in R2.

Denote g and h the first and second fundamental forms, respectively. Then the components

of g are calculated by the induced metric from I3, namely

g11 = ⟨ru, ru⟩i , g12 = ⟨ru, rv⟩i , g22 = ⟨rv, rv⟩i , ru =
∂r

∂u
.

The unit normal vector is (0, 0, 1) because it is orthogonal to all non-isotropic vectors. The

components of h are given by

h11 =
det (ruu, ru, rv)√

det g
, h12 =

det (ruv, ru, rv)√
det g

, h22 =
det (rvv, ru, rv)√

det g
,

where ruu = ∂2r
∂u∂u , etc. Therefore, the isotropic Gaussian (or relative) and mean curvatures are

respectively defined by

K =
deth

det g
, H =

g11h22 − 2g12h12 + g22h11
2 det g

.

For convenience, we call these Gaussian and mean curvatures.

By a flat (minimal) surface we mean a surface with vanishing Gaussian (mean) curvature.

Notice that hij ’s are proportional to the corresponding Euclidean coefficient of the surface;

namely, it is possible to define elliptic, hyperbolic and parabolic points. So, we can interpret the

sign of K in the same way we do in Euclidean geometry.

In the particular case that the surface is the graph z = w (x, y) , the Gaussian and mean

curvatures turn to

K = wxxwyy − w2
xy, H =

wxx + wyy

2
. (4)

Accordingly; if it is the graph x = w (y, z) , then these curvatures are formulated by

K =
wyywzz − w2

yz

w4
z

, H =
w2
zwyy − 2wywzwyz +

(
1 + w2

y

)
wzz

2w3
z

, (5)

where wz ̸= 0 because of the admissibility.
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3. Affine factorable surfaces of type 1

An affine factorable surface of type 1 in I3 is a graph

z = w (x, y) = f1 (x) f2 (y + ax) , a ̸= 0,

for smooth functions f1 and f2. Let us put u1 = x and u2 = y+ax. By (4), we get the Gaussian

curvature as

K = f1f2f
′′
1 f

′′
2 −

(
f ′
1f

′
2

)2
, (6)

where f ′
1 =

df1
du1

and f ′
2 =

df2
du2

and so on.

Theorem 3.1. Let an affine factorable surface of type 1 in I3 have constant Gaussian curvature

K0. Then, for b, c0, c1, c2 ∈ R, we have

(1) if K0 = 0, then

(a) w (x, y) = c0f2 (y + ax) or w (x, y) = c0f1 (x) ;

(b) w (x, y) = c0e
c1x+c2(y+ax);

(c) w (x, y) = c0

[
(y+ax+c1)

b

x+c2

] 1
b−1

, b ̸= 1;

(d) w (x, y) = c0

[
(x+c1)

b

y+ax+c2

] 1
b−1

, b ̸= 1.

(2) Otherwise, i.e. K0 ̸= 0 then K0 is negative and

(a) w (x, y) = c0
(√

−K0x+ c1
)
(y + ax+ c2) .

(b) w (x, y) = c0 (x+ c1)
[√

−K0 (y + ax) + c2
]
.

Proof. We have two cases:

(1) K0 = 0. (6) reduces to

f1f2f
′′
1 f

′′
2 −

(
f ′
1f

′
2

)2
= 0. (7)

(7) holds when f1 or f2 is a constant. This proves the item (1.a) of the theorem. If

f ′
1f

′
2 ̸= 0, then (7) implies f ′′

1 f
′′
2 ̸= 0. Thereby, (7) can be rewritten by dividing f2f

′′
2 (f ′

1)
2

as

f1f
′′
1

(f ′
1)

2 =
(f ′

2)
2

f2f ′′
2

,

where the left-hand side is a function of u1 whereas the right-hand side is a function of

u2. This is possible in case both sides are only constant, i.e.

f1f
′′
1

(f ′
1)

2 = b =
(f ′

2)
2

f2f ′′
2

, (8)

where b ∈ R, b ̸= 0. If b = 1, after solving (8), we obtain

f1 (u1) = c0 exp (c1u1) , f2 (u2) = c2 exp (c3u2) , c0, ..., c3 ∈ R,

which proves the item (1.b) of the theorem. Otherwise, i.e. b ̸= 1, by solving (8), we

derive

f1 (u1) = [(1− b) (c4u1 + c5)]
1

1−b , f2 (u2) =

[(
b

b− 1

)
(c6u2 + c7)

] b
b−1

,

for c4, ..., c7 ∈ R. This is the proof of the item (1.c) of the theorem. The item (1.d) of

the theorem can be proved in a similar way by taking 1
b instead of b.
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(2) K0 ̸= 0. (6) can be rewritten as

K0 = f1f2f
′′
1 f

′′
2 −

(
f ′
1f

′
2

)2
. (9)

If f1 or f2 is constant in (9) then K0 = 0. Thus we may assume f ′
1f

′
2 ̸= 0. To solve (9)

we have two sub-cases:

(i) f1 or f2 is linear function. Without loss of generality we may assume f1 = c0u1+c1,

c0, c1 ∈ R, c0 ̸= 0. By (9), we get K0 = −c20 (f
′
2)

2or

f2 (u2) =

√
−K0

c20
u2 + c2, c2 ∈ R,

which proves the item (2.b) of the theorem. In a similar way the proof of the item

(2.a) of the theorem can be done.

(ii) Neither f1 nor f2 are a linear function. After dividing (9) with f1f
′′
1 (f ′

2)
2, we can

write
K0

f1f ′′
1

(
1

f ′
2

)2

=
− (f ′

1)
2

f1f ′′
1

+
f2f

′′
2

(f ′
2)

2 . (10)

By taking partial derivative of (10) with respect to u2 we derive

K0

f1f ′′
1

= −

[
f2f

′′
2

(f ′
2)

2

]′ [
(f ′

2)
3

2f ′′
2

]
,

which means f1f
′′
1 = c3, c3 ∈ R, c3 ̸= 0. Considering it into (10) gives

1

c3

(
f ′
1

)2
=

f2f
′′
2

(f ′
2)

2 − K0

c3

(
1

f ′
2

)2

.

This yields f ′
1 = const. and contradicts with f ′′

1 ̸= 0.

�

From (4), the mean curvature follows

2H =
(
1 + a2

)
f1f

′′
2 + 2af ′

1f
′
2 + f ′′

1 f2. (11)

Theorem 3.2. Let an affine factorable surface of type 1 in I3 be minimal. Then, for b, c0, c1, c2 ∈
R, either

(1) it is a non-isotropic plane; or

(2) w (x, y) = c0e
bx+ −ba

1+a2
(y+ax)

[
c1 sin

(
b

1+a2
(y + ax)

)
+ c2 cos

(
b

1+a2
(y + ax)

)]
; or

(3) w (x, y) = c0e
by [c1 sin (bx) + c2 cos (bx)] .

Proof. (11) reduces to (
1 + a2

)
f1f

′′
2 + 2af ′

1f
′
2 + f ′′

1 f2 = 0. (12)

If f1 or f2 is a constant function in (12), we have immediately the first item of the theorem.

Suppose then that f ′
1f

′
2 ̸= 0 in (12). If f1 = c0u1+ c1, c0, c1 ∈ R, c0 ̸= 0, (12) gives the following

polynomial equation in u1[(
1 + a2

)
f ′′
2

]
c1 + 2ac0f

′
2 + c0

[(
1 + a2

)
f ′′
2

]
u1 = 0,

which yields f ′
2 = f ′′

2 = 0. This is not our case and we deduce f ′′
1 ̸= 0. In a similar way f ′′

2 ̸= 0

can be shown. Next we divide (12) by f ′
1f

′
2

−2a =
(
1 + a2

)(f1
f ′
1

)(
f ′′
2

f ′
2

)
+

(
f ′′
1

f ′
1

)(
f2
f ′
2

)
. (13)
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The partial derivative of (13) with respect to u1 gives(
1 + a2

)(f1
f ′
1

)′
f ′′
2 +

(
f ′′
1

f ′
1

)′
f2 = 0. (14)

We have three cases to solve (14):

(1) f ′
1 = bf1, b ∈ R, b ̸= 0. That is a solution for (14) and thus (13) reduces to

1 + a2

b
f ′′
2 + 2af ′

2 + bf2 = 0, (15)

which is a homogenous linear second-order ODE with constant coefficients. The charac-

teristic equation of (15) has complex roots −b
1+a2

(a± i), so its solution turns to

f2 (u2) = e

(
−ba
1+a2

)
u2

[
c1 cos

(
b

1 + a2
u2

)
+ c2 sin

(
b

1 + a2
u2

)]
. (16)

Considering (16) with the assumption of Case 1 gives the proof of the second item of the

theorem.

(2) f ′
2 = bf2, b ∈ R, b ̸= 0. After taking partial derivative of (13) with respect to u2 the

proof of the last item of the theorem is same with previous case.

(3) (f1/f
′
1)

′ (f2/f
′
2)

′ ̸= 0. Hence, (14) yields that f2 and f ′′
2 can not be linearly independent,

i.e. f ′′
2 = c0f2, c0 ∈ R, c0 ̸= 0. Substituting this into (13) gives

−2a
f ′
2

f2
= c0

(
1 + a2

) f1
f ′
1

+
f ′′
1

f ′
1

. (17)

Because (f2/f
′
2)

′ ̸= 0 the left-hand side of (17) is a function of u2 whereas the right-hand

side is a function of u1 or a constant. This is a contradiction.

�

Theorem 3.3. Let an affine factorable surface of type 1 in I3 have nonzero constant mean

curvature H0. Then, for c0, c1, c2 ∈ R, we have either

(i) w (x, y) = H0
1+a2

(y + ax)2 + y + ax+ c0 or

(ii) w (x, y) = (c0x+ c1)
[
H0
ac0

(y + ax) + c2

]
.

Proof. (11) can be rewritten as

2H0 =
(
1 + a2

)
f1f

′′
2 + 2af ′

1f
′
2 + f ′′

1 f2. (18)

In order to solve (18) we have two cases:

(1) Case f ′′
1 = 0. If f ′

1 = 0, then (18) proves the item (i) of the theorem. If f1 = c0u1 + c1,

c0, c1 ∈ R, c0 ̸= 0, then by (18) we get a polynomial equation in f1

−2H0 + 2ac0f
′
2 +

[(
1 + a2

)
f ′′
2

]
f1 = 0,

which implies that f ′′
2 = 0 and

f ′
2 =

H0

ac0
.

This proves the item (ii) of the theorem.

(2) Case f ′′
1 ̸= 0. By assuming f ′′

2 = 0 and applying above process we achieve the contradic-

tion f ′′
1 = 0. Then f ′′

1 f
′′
2 ̸= 0 and (18) can be rearranged as

2H0 =
(
1 + a2

)
f1p2ṗ2 + 2ap1p2 + f2p1ṗ1, (19)
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where pi =
dfi
dui

and ṗi =
dpi
dfi

=
f ′′
i
f ′
i
, i = 1, 2. Thus (19) can be divided by f2p1 as

2H0

f2p1
=
(
1 + a2

)(f1
p1

)(
p2ṗ2
f2

)
+ 2a

p2
f2

+ ṗ1. (20)

The partial derivative of (20) with respect to f1 leads to

d

df1

(
1

p1

)(
2H0

f2

)
=
(
1 + a2

) d

df1

(
f1
p1

)(
p2ṗ2
f2

)
+ p̈1, (21)

where p̈1 = d2p1
df2

1
. If p1 = c3f1, c3 ∈ R, c3 ̸= 0, then the right-hand side of (21) becomes

zero, which is no possible. Thereby, (21) can be rewritten by dividing d
df1

(
f1
p1

)
as

d
df1

(
1
p1

)
d
df1

(
f1
p1

)
︸ ︷︷ ︸

A(f1)

(
2H0

f2

)
=

p̈1
d
df1

(
f1
p1

)+
︸ ︷︷ ︸

B(f1)

(
1 + a2

)
p2ṗ2

f2
, (22)

where A (f1) and B (f1) are a function of f1. After taking partial derivatives of (22) with

respect to f1 and f2 we can deduce A is a constant A0 ̸= 0 because d
df2

(
2H0
f2

)
̸= 0. This

follows from (22) that B is also a constant B0. Therefore we write

d

df1

(
1

p1

)
= A0

d

df1

(
f1
p1

)
and p̈1 = B0

d

df1

(
f1
p1

)
. (23)

An integration of first equation in (23) gives

1

p1
= A0

f1
p1

+ c4, c4 ∈ R, c4 ̸= 0, or p1 =
1

c4
− A0

c4
f1. (24)

It follows from (24) that p̈1 = B0 = 0 and thus (22) implies(
1 + a2

)
p2ṗ2 = 2A0H0. (25)

On the other hand, if we take partial derivative of (19) with respect to f1 and consider

(25) into it then we have

p2 =
A0

2ac4
f2 +

c4H0

a
. (26)

Comparing (25) and (26) gives a contradiction.

�

4. Affine factorable surfaces of type 2

An affine factorable surface of type 2 in I3 is a graph

z = w (x, y) = f1 (y + az) f2 (z) , a ̸= 0,

for smooth functions f1, f2. Put u1 = y + az and u2 = z. From (5), the Gaussian curvature

follows

K =
f1f2f

′′
1 f

′′
2 − (f ′

1f
′
2)

2

(af ′
1f2 + f1f ′

2)
4 , (27)

where f ′
1 =

df1
du1

, f ′
2 =

df2
du2

. Notice that the admissibility refers to af ′
1f2 + f1f

′
2 ̸= 0.

Theorem 4.1. Let an affine factorable surface of type 2 in I3 have constant Gaussian curvature

K0. Then it is flat (i.e. K0 = 0) and one of the following occurs:

a. w (y, z) = c0f1 (y + az), ∂f1
∂z ̸= 0 or w (y, z) = c0f2 (z),

df2
dz ̸= 0;
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b. w (y, z) = c0e
c1(y+az)+c2z;

c. w (x, y) = c0

[
(y+az+c1)

b

z+c2

] 1
b−1

, b ̸= 1;

d. w (x, y) = c0

[
(z+c1)

b

y+az+c2

] 1
b−1

, b ̸= 1, where b, c0, c1, c2 ∈ R.

Proof. If K0 = 0 in (27), then the proofs of the items (a),...,(d) of the theorem are similar with

the first four items of Theorem 3.1. The continuation of the proof is by contradiction. Suppose

that K0 ̸= 0 and then (27) turns to

K0 =
f1f2f

′′
1 f

′′
2 − (f ′

1f
′
2)

2

(af ′
1f2 + f1f ′

2)
4 , (28)

where f1, f2 must be non-constants. Afterwards, we use the property that the roles of f1, f2 are

symmetric in (28). If f1 = c0u1+c1, c0, c1 ∈ R, c0 ̸= 0, then (28) turns to a polynomial equation

in f1

ξ1 (u2) + ξ2 (u2) f1 + ξ3 (u2) f
2
1 + ξ4 (u2) f

3
1 + ξ5 (u2) f

4
1 = 0,

where
ξ1 (u2) = K0a

4c40f
4
2 + c20 (f

′
2)

2 ,

ξ2 (u2) = 4K0a
3c30f

3
2 f

′
2,

ξ3 (u2) = 6K0a
2c20f

2
2 (f

′
2)

2 ,

ξ4 (u2) = 4K0ac0f2 (f
′
2)

3 ,

ξ5 (u2) = K0 (f
′
2)

4 .

The fact that each coefficient ξi, i = 1, ..., 5, must vanish contradicts with f2 ̸= const. Thereby,

we conclude f ′′
1 ̸= 0 (and so f ′′

2 ̸= 0 by symmetry). Next, put ω1 = f1f
′′
1 , ω2 = (f ′

1)
2 , ω3 = f ′

1,

ω4 = f1 in (28). After taking partial derivative of (28) with respect to u1, it can be rewritten as

µ1f
2
2 f

′′
2 + µ2f2f

′
2f

′′
2 − µ3f2

(
f ′
2

)2 − µ4

(
f ′
2

)3
= 0, (29)

where
µ1 = a (ω′

1ω3 − 4ω1ω
′
3) ,

µ2 = ω′
1ω4 − 4ω1ω

′
4,

µ3 = a (ω′
2ω3 + 4ω2ω

′
3) ,

µ4 = −ω′
2ω4 + 4ω2ω

′
4,

(30)

for ω′
i =

dωi
du1

, i = 1, ..., 4. Notice that ωi and µi are function of the variable u1. By dividing (29)

with f2
2 f

′
2, we deduce

f ′′
2

f ′
2

(
µ1 + µ2

f ′
2

f2

)
=

(
µ3

f ′
2

f2
+ µ4

(
f ′
2

f2

)2
)
. (31)

For (31) we have to distinguish several cases:

(1)
f ′
2

f2
= c2 ̸= 0, c2 ∈ R. Substituting it into (28) leads to the polynomial equation in f2

c22

(
f1f

′′
1 −

(
f ′
1

)2)−K0

(
af ′

1 + c2f1
)4

f2
2 = 0,

where the coefficients must vanish, namely

af ′
1 + c2f1 = 0 and f1f

′′
1 −

(
f ′
1

)2
= 0.

The first equality however contradicts with the admissibility, i.e. the assumption af ′
1f2+

f1f
′
2 ̸= 0.

(2) µi = 0, i = 1, ..., 4. Because µ3 = 0, we conclude 6 (f ′
1)

2 f ′′
1 = 0, which is not our case.



80 TWMS J. PURE APPL. MATH., V.11, N.1, 2020

(3) µ1 + µ2
f ′
2

f2
̸= 0. (31) follows

f ′′
2

f ′
2

=
µ3

f ′
2

f2
+ µ4

(
f ′
2

f2

)2
µ1 + µ2

f ′
2

f2

. (32)

The partial derivative of (32) with respect to u1 gives a polynomial equation in
f ′
2

f2
and

the fact that each coefficient must vanish yields the following system:
µ′
2µ4 − µ2µ

′
4 = 0,

µ′
2µ3 − µ2µ

′
3 + µ′

1µ4 − µ1µ
′
4 = 0,

µ′
1µ3 − µ1µ

′
3 = 0.

(33)

By (33), we deduce that µ3 = c3µ1, µ4 = c4µ2, c3, c4 ∈ R, and

(c4 − c3)
(
µ′
1µ2 − µ1µ

′
2

)
= 0. (34)

We have to consider two sub-cases:

(i) c3 = c4. Put c3 = c4 = c and thus c must be nonzero due to the assumption of Case

3. Then (31) leads to
f ′′
2

f ′
2

= c
f ′
2

f2
,

which implies f ′
2 = c5f

c
2 , c5 ∈ R, c5 ̸= 0. Note that c ̸= 1 due to Case 1. Hence,

(28) turns to

K0

c25

(
cf1f ′′

1 − (f ′
1)

2
) =

(
f c
2

(af ′
1f2 + c5f1f c

2)
2

)2

. (35)

The partial derivative of (35) with respect to f2 concludes

a (c− 2) f ′
1 − cc5f1f

c−1
2 = 0. (36)

Again partial derivative of (36) with respect to f2 leads to either c = 0 or c = 1 or

c5 = 0. However, none of these is possible.

(ii) c3 ̸= c4. It follows from (34) that µ1 = c6µ2, c6 ∈ R. On the other hand, plugging

ω1 = ω′
3ω4 and ω3 = ω′

4 into the equation µ3 − c3µ1 = 0 yields

(6− c3)ω
2
3ω

′
3 − c3ω3ω

′′
3ω4 + 4c3

(
ω′
3

)2
ω4 = 0. (37)

Dividing (37) by ω3ω4ω
′
3 gives

(6− c3)
ω′
4

ω4
− c3

ω′′
3

ω′
3

+ 4c3
ω′
3

ω3
= 0. (38)

Integrating of (38) leads to

ω′
3 = c7ω

4
3ω

6−c3
c3

4 , c7 ∈ R, c7 ̸= 0. (39)

By producting (39) with ω4, we get

ω1 = c7ω
4
3ω

6
c3
4 . (40)

On the other hand, µ1 − c4µ2 = 0 implies

ω′
1

ω1
− 4

aω′
3 − c4ω

′
4

aω3 − c4ω4
= 0. (41)
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From integrating of (41), we derive

ω1 = c8 (aω3 − c6ω4)
4 , c8 ∈ R, c8 ̸= 0. (42)

Comparing (40) and (42) leads to

c7ω
4
3ω

6
c3
4 = c8 (aω3 − c6ω4)

4 . (43)

Without of loss generality, we may assume that the terms are positive in (43). Then

we can obtain ω3 from (43) as follows:

ω3 =
−c6ω4(

c7
c8

) 1
4
ω

3
2c3
4 − a

. (44)

Revisiting (39) and integrating it gives

ω2
3 =

1

c9ω
6
c3
4 + c10

, c9, c10 ∈ R, c9 ̸= 0. (45)

After equalizing (44) and (45), we obtain an equation of the form

c26ω
6+2c3

c3
4 −

(
c7
c8

) 1
2

ω
3
c3
4 + 2a

(
c7
c8

) 1
4

ω
3

2c3
4 + c10c

2
4ω

2
4 − a2 = 0.

This equation leads to a contradiction because ω4 = f1 is an arbitrary non-constant

function.

�

By (5) the mean curvature is

2H =
(f ′

1f2)
2 f1f

′′
2 − 2 (f ′

1f
′
2)

2 f1f2 + (f1f
′
2)

2 f2f
′′
1 + f1f

′′
2 + 2af ′

1f
′
2 + a2f ′′

1 f2

(af ′
1f2 + f1f ′

2)
3 . (46)

Theorem 4.2. There does not exist a minimal affine factorable surface of type 2 in I3, except
non-isotropic planes.

Proof. The proof is by contradiction. (46) follows(
f ′
1f2
)2

f1f
′′
2 − 2

(
f ′
1f

′
2

)2
f1f2 +

(
f1f

′
2

)2
f2f

′′
1 + f1f

′′
2 + 2af ′

1f
′
2 + a2f ′′

1 f2 = 0. (47)

If f1 or f2 is a constant, then (47) deduces that the surface is a non-isotropic plane. Assume

that f1, f2 are non-constant. If f ′′
1 = 0, then (47) gives a polynomial equation in f1 :

2af ′
1f

′
2 +

[(
f ′
1f2
)2

f ′′
2 − 2

(
f ′
1f

′
2

)2
f2 + f ′′

2

]
f1 = 0,

which is no possible because af ′
1f

′
2 ̸= 0. Then we have f ′′

1 ̸= 0 and so f ′′
2 ̸= 0 by symmetry.

Henceforth we deal with the case f ′′
1 f

′′
2 ̸= 0. Dividing (47) with (f ′

1f
′
2)

2 f1f2 leads to

f2f ′′
2

(f ′
2)

2 +
f1f ′′

1

(f ′
1)

2 +

(
1

(f ′
1)

2

)(
f ′′
2

f2(f ′
2)

2

)
+

+2a
(

1
f1f ′

1

)(
1

f2f ′
2

)
+ a2

(
f ′′
1

f1(f ′
1)

2

)(
1

(f ′
2)

2

)
= 2.

(48)
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The partial derivative of (48) with respect to u1 and u2 yields(
1

(f ′
1)

2

)′

︸ ︷︷ ︸
ω1

(
f ′′
2

f2 (f ′
2)

2

)′

︸ ︷︷ ︸
ω2

+ 2a

(
1

f1f ′
1

)′

︸ ︷︷ ︸
ω3

(
1

f2f ′
2

)′

︸ ︷︷ ︸
ω4

+a2

(
f ′′
1

f1 (f ′
1)

2

)′

︸ ︷︷ ︸
ω5

(
1

(f ′
2)

2

)′

︸ ︷︷ ︸
ω6

= 0,

(49)

where ω1ω6 ̸= 0 because f ′′
1 f

′′
2 ̸= 0. For (49), we consider two cases:

(1) Case ω3 = 0. It follows f1f
′
1 = c0, c0 ∈ R, c0 ̸= 0. Then, we have ω1 = 2

c0
, ω5 = −1

f2
1
and

hence (49) reduces to the following polynomial equation in f1

−c0
2
a2ω6 + ω2f

2
1 = 0

which is not possible because ω6 ̸= 0.

(2) Case ω3 ̸= 0. After dividing (49) by ω1ω6, we write

A (u2) + 2aB (u1)C (u2) + a2D (u1) = 0, (50)

where

A (u2) =
ω2

ω6
, B (u1) =

ω3

ω1
, C (u2) =

ω4

ω6
, D (u1) =

ω5

ω1
.

Notice also that all A,B,C and D in (50) must be constant for every u1, u2. Therefore,

being B and D constants lead to respectively

f1 =
f ′
1

c1 + c2 (f ′
1)

2 (51)

and
f ′′
1

f ′
1

= f1

(
c3
f ′
1

+ c4f
′
1

)
, (52)

where c1, ..., c4 ∈ R, c1 ̸= 0 because ω3 ̸= 0. Put p1 =
df1
du1

and ṗ1 =
dp1
df1

=
f ′′
1
f ′
1
in (51) and

(52). The derivative of (51) with respect to f1 gives

ṗ1 =

(
c1 + c2p

2
1

)2
c1 − c2 (p1)

2 . (53)

Nevertheless, plugging (51) into (52) leads to

ṗ1 =
c3 + c4p

2
1

c1 + c2p21
. (54)

Equalizing (53) and (54) refers to the polynomial equation in p1

ξ1 + ξ2p
2
1 + ξ3p

4
1 + ξ4p

6
1 = 0,

in which the following coefficients

ξ1 = c31 − c1c3,

ξ2 = 3c21c2 − c1c4 + c2c3,

ξ3 = 3c1c
2
2 + c2c4,

ξ4 = c32
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must vanish. Being ξ2 = ξ4 = 0 implies c2 = c4 = 0 and thus from (51) and (53) we get

f ′′
1 = c1f

′
1 = c21f1. Considering these into (47) leads to the polynomial equation in f1

c21

[
f2
2 f

′′
2 − f2

(
f ′
2

)2]
f3
1 +

[
f ′′
2 + 2ac1f

′
2 + a2c21f2

]
f1 = 0,

where the coefficients must vanish, namely

f2
2 f

′′
2 − f2

(
f ′
2

)2
= 0, (55)

and

f ′′
2 + 2ac1f

′
2 + a2c21f2 = 0. (56)

Integrating of (55) leads to f ′
2 = c5f2 and thus f ′′

2 = c25f2, c5 ∈ R, c5 ̸= 0. Substituting

it into (56) gives ac1 + c5 = 0. This however contradicts with the admissibility, i.e. the

assumption af ′
1f2 + f1f

′
2 = f1f2 (ac1 + c5) ̸= 0.

�
Theorem 4.3. Let an affine factorable surface of type 2 in I3 have nonzero constant mean

curvature H0. If f2 is a linear function then, for c0, c1, c2 ∈ R, we have

w (y, z) =
±1

2H0c0

√
c1 − 4H0c20(y + az) + c2. (57)

Proof. If f2 = c0, c0 ∈ R, then (46) follows

2H0c
2
0 =

f ′′
1

(f ′
1)

3 . (58)

Solving (58) concludes

f1 (u1) =
±1

2H0c20

√
−4H0c20u1 + c1 + c2,

for c1, c2 ∈ R. This provides (57). If f ′
2 = c4 ̸= 0, c4 ∈ R, then (46) reduces to

2H0

(
af ′

1f2 + c4f1
)3

= 2ac4f
′
1 +

[
−2
(
c4f

′
1

)2
f1 + (c4f1)

2 f ′′
1 + a2f ′′

1

]
f2,

which is a polynomial equation in f2. It is easy to see that the the coefficient of the term of

degree 3 is 2H0 (f
′
1)

3 which cannot vanish. This completes the proof. �

Now let us assume that f1 and f2 to be polynomials of degree m and n, respectively. So, we

get

f1 (u1) = αmum1 +αm−1u
m−1
1 + ...+α1u1+α0, f2 (u2) = βnu

n
2 +βn−1u

n−1
2 + ...+β1u2+β0, (59)

where αmβn ̸= 0. Note that if we take m ≤ 1 or n ≤ 1, we already derive a non-existence result

because of the previous lemma. Therefore, it is assumed that m ≥ 2 and n ≥ 2. Next we have

Theorem 4.4. Let an affine factorable surface of type 2 in I3 given by

z = w (x, y) = f1 (y + az) f2 (z) , a ̸= 0,

where f1 and f2 are polynomials of degrees greater than or equal to 2. Then it cannot have

nonzero constant mean curvature H0.

Proof. (46) can be rewritten as

(f ′
1f2)

2 f1f
′′
2 − 2 (f ′

1f
′
2)

2 f1f2 + (f1f
′
2)

2 f2f
′′
1 + f1f

′′
2 + 2af ′

1f
′
2 + a2f ′′

1 f2−
−2H0a

3 (f ′
1f2)

3 − 6H0a
2 (f ′

1f2)
2 f1f

′
2 − 6H0af

′
1f2 (f1f

′
2)

2 − 2H0 (f1f
′
2)

3 = 0.
(60)

Replacing (59) into (60), we derive a polynomial equation in u1 and u2 in which all coefficients

vanish identically. The term of highest degree up to u1 comes from f3
1 and its coefficient is

2H0α
3
m (f ′

2)
3 . This implies f ′

2 = 0 which contradicts with n ≥ 2. �
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5. Some examples

We provide and illustrate several examples for affine factorable surfaces of both types with

K,H constants.

Example 5.1. Let us consider the following surfaces:

(1) a minimal affine factorable surface of type 1, which is the graph

z = ex−
1
2
(y+x)

[
sin

1

2
(y + x) + cos

1

2
(y + x)

]
, x, y ∈ [0, 2π];

(2) an affine factorable surface of type 1 with K = −H = −1, which is the graph

z = x(y + x), x, y ∈ [−π, π];

(3) a flat affine factorable surface of type 2, which is the graph

x = cos (y + 2z) , y, z ∈ [0, π];

(4) an affine factorable surface of type 2 with H = 1, which is the graph

x =
√

y + 2z, y, z ∈ [0, 10].

We can draw these surfaces as in Fig. 1,..., Fig. 4, respectively.

6. Conclusion

In the present paper, affine factorable surfaces with constant Gaussian and mean curvature

were classified. Without imposing some extra conditions, finding affine factorable surfaces of

type 2 with H = const ̸= 0 is still an open problem. When f1 or f2 is a linear function, and

both of them are polynomials, the problem was partially solved in this paper.
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Figure 1. A minimal affine factorable surface of type 1.
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Figure 2. An affine factorable surface of type 1 with K = −H = −1.

Figure 3. A flat affine factorable surface of type 2.

Figure 4. An affine factorable surface of type 2 with H = 1.
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Math., 293, pp.22-51.

[41] Thurston, W.P., (1997), Three-dimensional geometry and topology, Princenton Math., Ser. 35, Princenton

Univ. Press, Princenton, NJ.

[42] Ushakov, V., (2000), The explicit general solution of trivial Monge-Ampère equation, Comment. Math. Helv.,

75(1), pp.125-133.

[43] Van de Woestyne, I., (1995), Minimal homothetical hypersurfaces of a semi-Euclidean space, Results. Math.,

27, pp.333-342.

[44] Yaglom, I. M., (1979), A simple non-Euclidean Geometry and Its Physical Basis, An elementary account

of Galilean geometry and the Galilean principle of relativity, Heidelberg Science Library. Translated from

the Russian by Abe Shenitzer. With the editorial assistance of Basil Gordon. Springer-Verlag, New York-

Heidelberg.

[45] Yoon, D.W., (2013), Minimal translation surfaces in H2 × R, Taiwanese J. Math., 17(5), pp.1545-1556.

[46] Yoon, D.W., Lee, J.W., (2014), Translation invariant surfaces in the 3-dimensional Heisenberg group, Bull.

Iranian Math. Soc., 40(6), pp.1373-1385.

[47] Yoon, D.W., Lee, C. W., Karacan, M.K., (2013), Some translation surfaces in the 3-dimensional Heisenberg

group, Bull. Korean Math. Soc., 50(4), pp.1329-1343.

[48] Yu, Y., Liu, H., (2007), The factorable minimal surfaces, Proceedings of the Eleventh International Workshop

on Differential Geometry, Kyungpook Nat. Univ. Taegu, 11, pp.33-39.

[49] Zong, P., Xiao, L., Liu, H.L., (2015), Affine factorable surfaces in three-dimensional Euclidean space, (Chi-

nese) Acta Math. Sinica (Chin. Ser.), 58(2), pp.329-336.

Muhittin Evren Aydin was born in 1986 in

Elazig, Turkey. He received M.Sc. and Ph.D. de-

grees from the Firat University, Elazig. Dr. Aydin

is currently an associated professor of Department

of Mathematics at Firat University. His research

interests include economics and differential geom-

etry.



88 TWMS J. PURE APPL. MATH., V.11, N.1, 2020

Ayla Erdur was born in 1992 in Elazig, Turkey.

She received M.Sc.degree from the Firat Univer-

sity, Elazig. She is currently doctorating in Namik

Kemal University, Tekirdag, Turkey. Her research

interests include differential geometry.

Mahmut Ergut, for a photograph and biography, see TWMS J. Pure Appl. Math., V.1, N.1, 2010, p.85.


