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LUCAS POLYNOMIALS AND APPLICATIONS TO AN UNIFIED CLASS

OF BI-UNIVALENT FUNCTIONS EQUIPPED WITH (P,Q)-DERIVATIVE

OPERATORS

ŞAHSENE ALTINKAYA1, SIBEL YALÇIN1

Abstract. We want to remark explicitly that, by using the Ln(x) functions (essentially linked

to Lucas polynomials of the second kind), our methodology builds a bridge, to our knowledge

not previously well known, between the Theory of Geometric Functions and that of Special

Functions, which are usually considered as very different fields. Thus, also making use of the

differential operator Ik
p,q, we introduce a new class of analytic bi-univalent functions. Coefficient

estimates, Fekete-Szegö inequalities and several special consequences of the results are obtained.
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1. Introduction

In ([8], [9]), for any variable quantity x, Lucas polynomials Ln(x) are defined recursively as

follows:

Ln(x) :=



2, n = 0,

x, n = 1,

xLn−1(x) + Ln−2(x), n ≥ 2,

from which the first few Lucas polynomials can be found as

L0(x) = 2, L1(x) = x, L2(x) = x2 + 2,

L3(x) = x3 + 3x, L4(x) = x4 + 4x2 + 2, . . . .

(1)

By letting x = 1 in the Lucas polynomials the Lucas numbers are obtained. The ordinary

generating function of the Lucas polynomials is

G{Ln(x)}(z) =

∞∑
n=0

Ln(x)z
n =

2− xz

1− z(x+ z)
.

Various authors have studied the properties of the Lucas polynomials and obtained many inter-

esting results. It is well known that many number and polynomial sequences can be generated by

recurrence relations of second order. Of these important sequences are the celebrated sequences

of Lucas. These sequences of polynomials and numbers are of great importance in a variety of
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branches such as physics, engineering, architecture, nature, art, number theory, combinatorics

and numerical analysis. These sequences have been studied in several papers from a theoretical

point of view (see, [14, 15, 18, 19, 28, 29]).

Fractional calculus is a pivotal branch of mathematical analysis. This kind of calculus deals

with derivatives and integrals to an arbitrary order (real or complex). Due to the frequent

appearance of differential equations of fractional order in various disciplines such as fluid me-

chanics, biology, engineering and physics, many researchers have focused on studying them from

theoretical and practical points of view. Historically speaking, a firm footing of the usage of

the the q-calculus in the context of geometric function theory was actually provided and the

basic (or q-) hypergeometric functions were first used in geometric function theory in a book

chapter by Srivastava (see, for details, [27]). In fact, the theory of univalent functions can be

described by using the theory of the q-calculus. Moreover, in recent years, such q-calculus op-

erators as the fractional q-integral and fractional q-derivative operators were used to construct

several subclasses of analytic functions (see, for example, [2, 12, 16, 20, 21]). On the other hand,

Mohammed and Darus [17] studied approximation and geometric properties of these q-operators

in regard to some subclasses of analytic functions in a compact disk.

Further, the possibility of extension of the q-calculus to post-quantum calculus was denoted

by the (p, q)-calculus. The (p, q)-calculus with have many applications in areas of science and

engineering was introduced in order to generalize the q-series by Gasper and Rahman [10]. The

(p, q)-series are derived as corresponding extensions of q-identities (for example [5, 21]).

We begin by providing some basic definitions and concept details of the (p, q)-calculus used

in this paper.

The (p, q)-number is given by

[n]p,q =
pn − qn

p− q
(p ̸= q),

which is a natural generalization of the q-number (see [11]), that is

lim
p→1

[n]p,q = [n]q =
1− qn

1− q
, q ̸= 1.

It is clear that the notation [n]p,q is symmetric, that is,

[n]p,q = [n]q,p .

Let p and q be elements of complex numbers and D = Dp,q ⊂ C such that x ∈ D implies

px ∈ D and qx ∈ D. Here, we give the following two definitions which involve a post-quantum

generalization of Sofonea’s work [24].

Definition 1.1. Let 0 < |q| < |p| ≤ 1. A given function f : Dp,q → C is called (p, q)-

differentiable under the restriction that, if 0 ∈ Dp,q, then f ′(0) exists.

Definition 1.2. Let 0 < |q| < |p| ≤ 1. A given function f : Dp,q → C is called (p, q)-

differentiable of order n, if and only if 0 ∈ Dp,q, then f (n)(0) exists.

Definition 1.3. (see [5]) The (p, q)-derivative of a function f is defined as

(Dp,qf)(x) =
f(px)− f(qx)

(p− q)x
(x ̸= 0),

and (Dp,qf)(0) = f ′(0), provided f ′(0) exists.

Let A be the class of functions f of the form

f(z) = z + a2z
2 + a3z

3 + · · · , (2)
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which are analytic in the open unit disk ∆ = {z : z ∈ C and |z| < 1} and normalized under the

conditions below:

f(0) = 0,

f ′(0) = 1.

Further, by S we shall denote the class of all functions in A which are univalent in ∆.

If f is of the form (2), then

(Dp,qf)(z) = 1 +

∞∑
n=2

[n]p,q anz
n−1.

With a view to recalling the principle of subordination between analytic functions, let the

functions f and g be analytic in ∆. Given functions f, g ∈ A, f is subordinate to g if there

exists a Schwarz function w ∈ Λ, where

Λ = {w : w (0) = 0, |w (z)| < 1, z ∈ ∆} ,

such that

f (z) = g (w (z)) (z ∈ ∆) .

We denote this subordination by

f ≺ g or f (z) ≺ g (z) (z ∈ ∆) .

In particular, if the function g is univalent in ∆, the above subordination is equivalent to

f(0) = g(0), f(∆) ⊂ g(∆).

The Koebe-One Quarter Theorem [6] ensures that the image of ∆ under every univalent function

f ∈ A contains a disk of radius 1/4. Thus every univalent function f ∈ A has an inverse f−1

satisfying f−1 (f (z)) = z and f
(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

f−1 (w) = w − a2w
2 +

(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · . (3)

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆. Let σ

denote the class of bi-univalent functions in ∆ given by (2). For a brief history and interesting

examples in the class σ, see [26] (see et also [1, 3, 4, 13, 18, 25, 30]).

Recently for f ∈ A, Selvaraj et al. [23] defined and discussed (p, q)-analogue of Salagean

differential operators as given below:

I0
p,qf(z) = f(z),

I1
p,qf(z) = z (Ip,qf(z)) ,

...

Ik
p,qf(z) = zIp,q(I

k−1
p,q f(z)),

Ik
p,qf(z) = z +

∞∑
n=2

[n]kp,qanz
n (k ∈ N0 = N ∪ {0}, z ∈ ∆).

If we let p = 1 and q → 1−, then Ik
p,qf(z) reduces to the well-known Salagean differential

operator [22].

We want to remark explicitly that, by using the Ln(x), functions (essentially linked to Lu-

cas polynomials of the second kind), our methodology builds a bridge, to our knowledge not

previously well known, between the theory of geometric functions and that of special functions,

which are usually considered as very different fields. Thus, also making use of the differential

operator Ik
p,q, we introduce a new class of analytic bi-univalent functions as follows:
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Definition 1.4. A function f ∈ σ is said to be in the class

Sk,p,q
σ (µ;x) (0 < µ ≤ 1, k ∈ N0, 0 < q < p ≤ 1; z, w ∈ ∆),

if the following subordinations are satisfied:

1

2

z
(
Ik
p,qf(z)

)′
f(z)

+

(
z
(
Ik
p,qf(z)

)′
f(z)

) 1
µ

 ≺ G{Ln(x)}(z)− 1,

1

2

w
(
Ik
p,qg(w)

)′
g(w)

+

(
w
(
Ik
p,qg(w)

)′
g(w)

) 1
µ

 ≺ G{Ln(x)}(w)− 1,

where the function g is given by (3).

Example 1.1. For µ = 1, a function f ∈ σ is said to be in the class

Sk,p,q
σ (x) (k ∈ N0, 0 < q < p ≤ 1; z, w ∈ ∆),

if the following conditions are satisfied :

z
(
Ik
p,qf(z)

)′
f(z)

≺ G{Ln(x)}(z)− 1,

w
(
Ik
p,qg(w)

)′
g(w)

≺ G{Ln(x)}(w)− 1,

where the function g is given by (3).

Example 1.2. For µ = 1 and k = 0, a function f ∈ σ is said to be in the class

Sσ (x) (z, w ∈ ∆),

if the following conditions are satisfied :

zf ′(z)

f(z)
≺ G{Ln(x)}(z)− 1,

and
wg′(w)

g(w)
≺ G{Ln(x)}(w)− 1,

where the function g is given by (3).

2. Coefficient estimates

We begin this section by finding the estimates on the coefficients |a2| and |a3| for functions

in the class Sk,p,q
σ (µ;x) proposed by Definition 1.4.

Theorem 2.1. Let f given by (2) be in the class Sk,p,q
σ (µ;x) . Then

|a2| ≤
2µ|x|

√
|x|√∣∣∣{2µ(µ+1)[(3[3]kp,q−1)−(2[2]kp,q−1)]−µ(µ+3)(2[2]kp,q−1)

2
}
x2−2(2[2]kp,q−1)

2
(µ+1)2

∣∣∣ ,
and

|a3| ≤
4µ2x2(

2 [2]kp,q − 1
)2

(µ+ 1)2
+

2µ |x|(
3 [3]kp,q − 1

)
(µ+ 1)

.
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Proof. Let f ∈ Sk,p,q
σ (µ;x) . From Definition 1.4, for some analytic functions Φ,Ψ such that

Φ(0) = Ψ(0) = 0,

|Φ(z)| =
∣∣t1z + t2z

2 + t3z
3 + · · ·

∣∣ < 1,

|Ψ(w)| =
∣∣s1w + s2w

2 + s3w
3 + · · ·

∣∣ < 1

and

|tk| ≤ 1, |sk| ≤ 1 (k ∈ N)
for all z, w ∈ ∆, we can write

1

2

z
(
Ik
p,qf(z)

)′
f(z)

+

(
z
(
Ik
p,qf(z)

)′
f(z)

) 1
µ

 = G{L(x)}(Φ(z))− 1,

1

2

w
(
Ik
p,qg(w)

)′
g(w)

+

(
w
(
Ik
p,qg(w)

)′
g(w)

) 1
µ

 = G{L(x)}(Ψ(w))− 1,

or equivalently

1

2

z
(
Ik
p,qf(z)

)′
f(z)

+

(
z
(
Ik
p,qf(z)

)′
f(z)

) 1
µ

 = 1 + L1(x)Φ(z) + L2(x)Φ
2(z) + · · · , (4)

and

1

2

w
(
Ik
p,qg(w)

)′
g(w)

+

(
w
(
Ik
p,qg(w)

)′
g(w)

) 1
µ

 = 1 + L1(x)Ψ(w) + L2(x)Ψ
2(w) + · · · . (5)

From the equalities (4) and (5), we obtain that

1

2

z
(
Ik
p,qf(z)

)′
f(z)

+

(
z
(
Ik
p,qf(z)

)′
f(z)

) 1
µ

 = 1 + L1(x)t1z +
[
L1(x)t2 + L2(x)t

2
1

]
z2 + · · · , (6)

and

1

2

w
(
Ik
p,qg(w)

)′
g(w)

+

(
w
(
Ik
p,qg(w)

)′
g(w)

) 1
µ

 = 1+L1(x)s1w+
[
L1(x)s2 + L2(x)s

2
1

]
w2 + · · · . (7)

Thus, upon comparing the corresponding coefficients in (6) and (7), we have(
2 [2]kp,q − 1

)
(µ+ 1)

2µ
a2 = L1(x)t1, (8)

µ+ 1

2µ

[(
3 [3]kp,q − 1

)
a3 −

(
2 [2]kp,q − 1

)
a22

]
+

1− µ

4µ2

(
2 [2]kp,q − 1

)2
a22 = L1(x)t2 + L2(x)t

2
1, (9)

−

(
2 [2]kp,q − 1

)
(µ+ 1)

2µ
a2 = L1(x)s1 (10)

and

µ+ 1

2µ

[(
3 [3]kp,q − 1

) (
2a22 − a3

)
−
(
2 [2]kp,q − 1

)
a22

]
+
1− µ

4µ2

(
2 [2]kp,q − 1

)2
a22 = L1(x)s2+L2(x)s

2
1.

(11)
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From the equations (8) and (10), we can easily see that

t1 = −s1, (12)

(2[2]kp,q−1)
2
(µ+1)2

2µ2 a22 = L2
1(x)

(
t21 + s21

)
. (13)

If we add (9) to (11), we get[
[(3[3]kp,q−1)−(2[2]kp,q−1)](µ+1)

µ +
(2[2]kp,q−1)

2
(1−µ)

2µ2

]
a22 = L1(x) (t2 + s2) + L2(x)

(
t21 + s21

)
. (14)

By using (13) in the equality (14), we have[{
2[(3[3]kp,q−1)−(2[2]kp,q−1)]µ(µ+1)+(2[2]kp,q−1)

2
(1−µ)

}
L2
1(x)−(2[2]

k
p,q−1)

2
(µ+1)2L2(x)

2µ2L2
1(x)

]
a22 = L1(x) (t2 + s2) ,

(15)

which gives

|a2| ≤
2µ|x|

√
|x|√∣∣∣{2µ(µ+1)[(3[3]kp,q−1)−(2[2]kp,q−1)]−µ(µ+3)(2[2]kp,q−1)

2
}
x2−2(2[2]kp,q−1)

2
(µ+1)2

∣∣∣ .
Moreover, if we subtract (11) from (9), we obtain

(3[3]kp,q−1)(µ+1)

µ (a3 − a22) = L1(x) (t2 − s2) + L2(x)
(
t21 − s21

)
. (16)

Then, in view of (12) and (13), also (16)

a3 =
2L2

1(x)µ
2

(2[2]kp,q−1)
2
(µ+1)2

(
t21 + s21

)
+ L1(x)µ

(3[3]kp,q−1)(µ+1)
(t2 − s2) .

Then, with the help of (1), we finally deduce

|a3| ≤ 4µ2x2

(2[2]kp,q−1)
2
(µ+1)2

+ 2µ|x|
(3[3]kp,q−1)(µ+1)

.

�

Putting µ = 1 in Theorem 2.1, we obtain

Corollary 2.1. Let f given by (2) be in the class Sk,p,q
σ (x) . Then

|a2| ≤
|x|
√

|x|√∣∣∣{(3[3]kp,q−1)−2(2[2]kp,q−1)[2]kp,q}x2−2(2[2]kp,q−1)
2
∣∣∣

and

|a3| ≤
x2(

2 [2]kp,q − 1
)2 +

|x|
3 [3]kp,q − 1

.

Putting µ = 1 and k = 0 in Theorem 2.1, we obtain

Corollary 2.2. Let f given by (2) be in the class Sσ (x) . Then

|a2| ≤ |x|
√

|x|
2
,

and

|a3| ≤ x2 +
|x|
2
.
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3. Fekete-Szegö problem for the function class Sk,p,q
σ (µ;x)

The classical Fekete-Szegö inequality, presented by means of Loewner’s method, for the coef-

ficients of f ∈ S is ∣∣a3 − ξa22
∣∣ ≤ 1 + 2 exp(−2ξ/(1− ξ)) for ξ ∈ [0, 1) .

As ξ → 1−, we have the elementary inequality
∣∣a3 − a22

∣∣ ≤ 1. Moreover, the coefficient functional

Γξ(f) = a3 − ξa22,

on the normalized analytic functions f in the unit disk ∆ plays an important role in function

theory. The problem of maximizing the absolute value of the functional Γξ(f) is called the

Fekete-Szegö problem, see [7].

In this section, we aim to provide Fekete-Szegö inequalities for functions in the class Sk,p,q
σ (µ;x).

These inequalities are given in the following theorem.

Theorem 3.1. Let f given by (2) be in the class Sk,p,q
σ (µ;x) and ϑ ∈ R. Then

∣∣a3 − ϑa22
∣∣ ≤



2µ|x|
(3[3]kp,q−1)(µ+1)

,

|ϑ− 1| ≤
∣∣∣∣ [(3[3]kp,q−1)−(2[2]kp,q−1)]

3[3]kp,q−1
− (µ+3)(2[2]kp,q−1)

2

2(µ+1)(3[3]kp,q−1)
− (2[2]kp,q−1)

2
(µ+1)

µ(3[3]kp,q−1)x2

∣∣∣∣ ,
4µ2|1−ϑ||x|3∣∣∣{2µ(µ+1)[(3[3]kp,q−1)−(2[2]kp,q−1)]−µ(µ+3)(2[2]kp,q−1)

2
}
x2−2(2[2]kp,q−1)

2
(µ+1)2

∣∣∣ ,

|ϑ− 1| ≥
∣∣∣∣ [(3[3]kp,q−1)−(2[2]kp,q−1)]

3[3]kp,q−1
− (µ+3)(2[2]kp,q−1)

2

2(µ+1)(3[3]kp,q−1)
− (2[2]kp,q−1)

2
(µ+1)

µ(3[3]kp,q−1)x2

∣∣∣∣ ,
Proof. From (15) and (16)we obtain

a3 − ϑa22 =
2µ2L3

1(x)(1−ϑ)(t2+s2){
2[(3[3]kp,q−1)−(2[2]kp,q−1)]µ(µ+1)+(2[2]kp,q−1)

2
(1−µ)

}
L2
1(x)−(2[2]

k
p,q−1)

2
(µ+1)2L2(x)

+ L1(x)µ(t2−s2)

(3[3]kp,q−1)(µ+1)

= L1(x)

[(
h (ϑ) + µ

(3[3]kp,q−1)(µ+1)

)
t2 +

(
h (ϑ)− µ

(3[3]kp,q−1)(µ+1)

)
s2

]
,

where

h (ϑ) =
2µ2L2

1(x)(1−ϑ){
2[(3[3]kp,q−1)−(2[2]kp,q−1)]µ(µ+1)+(2[2]kp,q−1)

2
(1−µ)

}
L2
1(x)−(2[2]

k
p,q−1)

2
(µ+1)2L2(x)

.

Then, in view of (1), we conclude that

∣∣a3 − ϑa22
∣∣ ≤



2µ |x|(
3 [3]kp,q − 1

)
(µ+ 1)

, 0 ≤ |h (ϑ)| ≤ µ(
3 [3]kp,q − 1

)
(µ+ 1)

2 |x| |h (ϑ)| , |h (ϑ)| ≥ µ(
3 [3]kp,q − 1

)
(µ+ 1)

.

�

Putting µ = 1 in Theorem 3.1, we have
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Corollary 3.1. Let f given by (2) be in the class Sk,p,q
σ (x) and ϑ ∈ R. Then

∣∣a3 − ϑa22
∣∣ ≤



|x|
3[3]kp,q−1

,

|ϑ− 1| ≤
∣∣∣∣ [(3[3]kp,q−1)−2(2[2]kp,q−1)[2]kp,q]

3[3]kp,q−1
− 2(2[2]kp,q−1)

2

(3[3]kp,q−1)x2

∣∣∣∣ ,
|1−ϑ||x|3∣∣∣{(3[3]kp,q−1)−2(2[2]kp,q−1)[2]kp,q}x2−2(2[2]kp,q−1)

2
∣∣∣ ,

|ϑ− 1| ≥
∣∣∣∣ [(3[3]kp,q−1)−2(2[2]kp,q−1)[2]kp,q]

3[3]kp,q−1
− 2(2[2]kp,q−1)

2

(3[3]kp,q−1)x2

∣∣∣∣ .
Putting µ = 1 and k = 0 in Theorem 3.1, we have

Corollary 3.2. Let f given by (2) be in the class Sk,p,q
σ (x) and ϑ ∈ R. Then∣∣a3 − ϑa22

∣∣ ≤ |x|
2
.

Putting ϑ = 1 in Theorem 3.1, we have

Corollary 3.3. If f ∈ Sk,p,q
σ (µ;x) , then∣∣a3 − a22

∣∣ ≤ 2µ |x|(
3 [3]kp,q − 1

)
(µ+ 1)

.

Putting µ = 1 and k = 0 in Corollary 3.3, we have

Corollary 3.4. Let f given by (2) be in the class Sσ (x) . Then∣∣a3 − a22
∣∣ ≤ |x|

2
.

4. Conclusion

In this investigation, we studied the analytic bi-univalent function class

Sk,p,q
σ (µ;x) (0 < µ ≤ 1, k ∈ N0, 0 < q < p ≤ 1; z, w ∈ ∆),

associated with the Lucas polynomials. For functions belonging to this class, we have derived

Taylor–Maclaurin coefficient inequalities and the celebrated Fekete–Szegö problem. The geo-

metric properties of the function class Sk,p,q
σ (µ;x) vary based on to the values according to the

parameters included. This approach has been extended to find more examples of bi-univalent

functions with the Lucas polynomials.
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[2] Aydoğan, M., Kahramaner, Y., Polatoğlu, Y., (2013), Close-to-convex functions defined by fractional opera-

tor, Appl. Math. Sci., 7, pp.2769-2775.

[3] Brannan, D.A., Clunie, J.G., (1980), Aspects of Contemporary Complex Analysis, New York: Proceedings

of an instructional conference: a NATO advanced study institute; Durham, 572p.

[4] Brannan, D.A., Taha, T. S., (1996), On some classes of bi-univalent functions, Studia Universitatis Babeş-
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