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THE COEFFICIENT ESTIMATES FOR A CLASS DEFINED BY HOHLOV

OPERATOR USING CONIC DOMAINS
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Abstract. Exploiting this article, we provide the coefficient estimate with m−th root trans-

form for a class defined by Hohlov operator using quasi-subordination for conic domains. The

authors sincerely hope this article will revive this concept and encourage the other researchers

to work in this quasi subordination in the near future in the area of complex function theory.
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1. Introduction

Let A denote the class of all analytic function f(z) of the form

f(z) = z +

∞∑
n=2

anz
n (1)

in the open disk U = {z ∈ C : |z| < 1} normalized by f(0) = 0 and f ′(0) = 1 and let S be

the subclass of A consisting of univalent functions in U . Let ϕ(z) be an analytic function with

positive real part on ∆ with ϕ(0) = 1, ϕ′(0) > 0 which maps the unit disk U onto the region

starlike with respect to 1, which is symmetric with respect to x−axis. The bounds for the

coefficients give information about the geometric properties of these functions. For example, the

bound for the second coefficient |a2| of normalized univalent functions readily yields the growth

and distortion bounds for univalent functions. The Fekete-Szegö coefficient functional |a3−µa22|
also naturally arises in the investigation of univalency of analytic functions. In fact, in recent

years, the study of the Fekete-Szegö problem was revived by (and has gained momentum) due

mainly to the pioneering work of Srivastava et al. [39] (also see [21], [41]). Many other authors

have investigated the bounds for the Fekete-Szegö functional for functions in various subclasses

of S for example see the related works in [1], [3], [6], [7], [22] and [42].

A function f(z) is subordinate to a function g(z), written as f(z) ≺ g(z), provided that

there is a function w(z), analytic ∆, with w(0) = 0 such that |w(z)| < 1 and f(z) = g[w(z)]

for z ∈ U . In particular if the function g(z) is univalent in U then f(z) ≺ g(z) is equivalent to

f(0) = g(0) and f(∆) ⊂ g(U). In [34], Robertson introduced the concept of quasi-subordination.

An analytic function f(z) is quasi-subordinate to an analytic function g(z), in the open unit

disk if there exist analytic functions φ and w, with w(0) = 0 such that |φ(z)| ≤ 1, |w(z)| < 1

and f(z) = φ(z)g[w(z)]. Then we write f(z) ≺q g(z). If φ(z) = 1, then the quasi-subordination
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reduces to the subordination. Also, if w(z) = z then f(z) = φ(z)g(z) and in this case we say

that f(z) is majorized by g(z) and it is written as f(z) ≺≺ g(z) in U . Hence, it is obvious

that quasi-subordination is the generalization of subordination as well as majorization. It is

unfortunate that the concept quasi-subordination is so for an underlying concept in the area

of complex function theory although it deserves much attention as it unifies the concept of

both subordination and majorization. Further, we refer to [4, 12, 23, 33] for works related to

quasi-subordination.

For fixed k (0 ≤ k < ∞), let k − UCV and k −SP be the subclasses of S consisting,

respectively, of functions which are k −uniformly convex and k−parabolic starlike in U . Thus

k − UCV :=

{
f ∈ S : R

(
1 +

zf ′′(z)

f ′(z)

)
> k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U
}
,

and

k − SP :=

{
f ∈ S : R

(
zf ′(z)

f (z)

)
> k

∣∣∣∣zf ′(z)

f (z)
− 1

∣∣∣∣ , z ∈ U
}
.

This interesting unification of the concepts of univalent convex functions [8] and uniformily

convex functions [11] is due to Kanas and Wisniowska [17].

The class k −SP , consisting of k−parabolic starlike functons is defined from k − UCV via

the Alexandar’s transforms [18]; that is,

f ∈ k − UCV ⇐⇒ g ∈ k − SP,

where g (z) = zf ′ (z) (z ∈ U).
The one variable characterization theorem [17] of the class k −UCV gives that f ∈ k−UCV

(respectively f ∈ k−SP ) if and only if the values of p (z) = 1+
zf ′′ (z)

f ′ (z)

(
respectively p (z) =

zf ′ (z)

f (z)

)
(z ∈ U) lie in the conic region Ωk in the w−plane, where

Ωk =
{
w = u+ iv ∈ C : u2 > k2(u− 1)2 + k2v2, u > 0, 0 ≤ k < ∞

}
.

This characterization enables us to designate precisely the domain Ωk, as a convex domain

contained in the right half-plane. Moreover, Ωk is an elliptic region for k > 1, parabolic for

k = 1, hyperbolic for 0 < k < 1 and finally Ω0 is the whole right half-plane.

Let m be a positive integer. A domain D is said to be m−fold symmetric if a rotation of D

about the origin through an angle 2π
m carries D to itself. A function f(z) is said to be m−fold

symmetric in U if for every z in U

f
(
e

2πi
m z
)
= e

2πi
m f (z) .

In 1916, Gronwall shows that if f(z) is regular and m-fold symmetric in U , then it has a

power series expansion of the form

f (z) = b1z + bm+1z
m+1 + b2m+1z

2m+1 + · · · =
∞∑
n=0

bnm+1z
nm+1. (2)

Conversely, if f(z) is given by the power series (2), then f(z) is m−fold symmetric inside the

circle of convergence of the series. For a univalent function f(z) of the form in (1), the m−th

root transform is defined by

F (z) = [f (zm)]1/m = z +

∞∑
n=1

bmn+1z
mn+1, z ∈ U . (3)



M. ÇAĞLAR et al.: THE COEFFICIENT ESTIMATES FOR A CLASS... 159

The convolution or the Hadamard product of two functions f, g ∈ A is denoted by f ∗ g and

is defined as follows:

(f ∗ g) (z) = z +

∞∑
n=2

anbnz
n = (g ∗ f) (z),

where f (z) is given by (1) and

g(z) = z +
∞∑
n=2

bnz
n.

In terms of the Hadamard product (or convolution), the Dziok-Srivastava linear convolution

operator involving the generalized hypergeometric function was introduced and studied sys-

tematically by Dziok and Srivastava [9], [10]. In fact, in Geometric Function Theory, there are

other families of general convolution operators including (for example) the generalized fractional

calculus operator and the Srivastava-Wright operator (see [20], [38]). Here, in our present in-

vestigation, we recall a much simpler convolution operator Ha,b
c due to Hohlov [13], [14], which

indeed is a very specialized case of the widely- (and extensively-) investigated Dziok-Srivastava

operator.

For complex numbers a, b and c (c ̸= 0,−1,−2, · · · ) the Gaussian hypergeometric function

2F1 (z) is defined by

2F1 (z) =2F1 (a, b, c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn = 1 +
ab

c
z +

a (a+ 1) b (b+ 1)

c (c+ 1)

z2

2!
+ · · · (4)

where (λ)n is the Pochhamer symbol or shifted factorial, written in terms of the gamma function

Γ, by

(λ)n =
Γ (λ+ n)

Γ (λ)
=

{
1, n = 0

λ (λ+ 1) ... (λ+ n− 1), n ∈ N .

Note that 2F1 (z) is symmetric in a and b and that the series (4) terminates if at least one of

the numerator parameters a and b is zero or a negative integer. Gaussian hypergeometric series

Hohlov [13], [14] introduced and studied the linear operator Ha,b
c : A → A defined by(

Ha,b
c (f)

)
(z) = z2F1 (a, b, c; z) ∗ f (z) , (f ∈ A, z ∈ U).

Observe that for the function f of the form (1), we have(
Ha,b

c (f)
)
(z) = z +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n−1

anz
n, z ∈ U . (5)

The Hohlov operator Ha,b
c unifies several previously well studied operators. Namely

• H2,1
1 (f) = zf ′ (z) = A (f) is the Alexandar transformation, where as H1,1

2 (f) =
z∫
0

f(t)
t dt

is its inverse transform [8];

• H1,2
3 (f) = L (f) is the Libera integral operator [40];

• H1,γ+1
γ+2 (f) = B (f) is the Bernardi integral operator [40];

• H1,2
n+1 (f) = Hn (f) is the Noor integral operator of order n [29]-[31];

• H1,n+1
1 (f) = Dn (f) (n > −1) is the Ruscheweyh derivative of f order n [36], [37];
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• Hα,1
c (f) = L (a, c) (f) is the Carlson-Shaffer operator [40];

• H2,1
2−λ (f) = Ωλ (f) is the Owa-Srivastava operator [32].

Definition 1.1. Let the class k−SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, c ̸= 0,−1,−2...) consist of func-

tions f ∈ A satisfying the following condition

R

z
(
Ha,b

c (f)
)′

(z)(
Ha,b

c (f)
)
(z)

 > k

∣∣∣∣∣∣∣
z
(
Ha,b

c (f)
)′

(z)(
Ha,b

c (f)
)
(z)

− 1

∣∣∣∣∣∣∣ , z ∈ U . (6)

In particular case k = 1, we denote by SP a,b
c the class 1 − SP a,b

c . We obtain the following

subclasses studied by various authors.

• for k = 1, a = 2, b = 1, c = 1, 1−SP 2,1
1 = UCV , the class of uniformly convex functions

has been studied by Goodman [11] and Ma and Minda [25].

• for k = 1, a = 1, b = 1, c = 2, 1− SP 1,1
2 = SP , the class of parabolic starlike functions

has been studied by Ronning [35].

• for k = 1, a = 2, b = 1, c = 2 − λ (0 ≤ λ ≤ 1), the class 1 − SP 2,1
2−λ = SPλ has been

studied by Srivastava and Mishra [40].

• for a = 2, b = 1, c = 2− λ (0 ≤ λ ≤ 1), the class k−SP 2,1
2−λ = k−SPλ has been studied

by Mishra and Gochhayat [26].

• for a = 2, b = 1, c = n+1, the class k - SP 2,1
n+1 = k−UCVn has been studied by Mishra

and Gochhayat [27].

In the particular cases k = 0, a = 2, b = 1, c = 1, we get 0 − SP 2,1
1 = CV , the class of

univalent convex functions [8]. Similarly, taking k = 0, a = 1, b = 1, c = 2, we get 0− SP 1,1
2 =

S∗, the class of univalent starlike functions [8].

Definition 1.2. Let the class k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, c ̸= 0,−1,−2...) consist of

functions f ∈ A satisfying the following condition the quasi-subordination

z
(
Ha,b

c (f)
)′

(z)(
Ha,b

c (f)
)
(z)

− 1 ≺qqk(w(z))− 1.

Note that in 2000, Kanas and Srivastava [16] found conditions on the parameters a, b, c and

k, for which Hohlov Operator maps the classes of starlike and univalent functions onto k−UCV

and k −SP.

In this paper, we obtain the coefficient estimates for a class defined by Hohlov Operator using

conic domains.

2. Preliminary results

We need the following lemmas to prove our results.

Let Ω be the class of analytic functions w, normalized by w(0) = 0 and satisfying the condition

|w(z)| < 1.

Lemma 2.1. [19] If w ∈ Ω and w(z) = w1z + w2z
2 + . . . (z ∈ U), then

|w2 − tw2
1| ≤ max{1, |t|}

for any complex number t. The result is sharp for the function w(z) = z2 or w(z) = z.
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Lemma 2.2. [24] If w ∈ Ω and w(z) = w1z + w2z
2 + . . . (z ∈ U), then

∣∣w2 − tw2
1

∣∣ ≤


−t, if t ≤ −1,

1, if −1 ≤ t ≤ 1,

t, if t ≥ 1.

For t < −1 or t > 1 , the equality holds if and only if w(z) = z or one of its rotations. For

−1 < t < 1, the equality holds if and only if w(z) = z2 or one of its rotations. Equality holds

for t = −1 if and only if w (z) = z
λ+ z

1 + λz
(0 ≤ λ ≤ 1) or one of its rotations, while for t = 1,

equality holds if and only if w (z) = −z
λ+ z

1 + λz
(0 ≤ λ ≤ 1) or one of its rotations.

Lemma 2.3. [19] Let the function w ∈ Ω be given by

w(z) = w1z + w2z
2 + w3z

3 + . . . , z ∈ U .

Then for every complex number µ,∣∣w2 − tw2
1

∣∣ ≤ 1 + (|t| − 1)
∣∣w2

1

∣∣
for any complex number t.

Lemma 2.4. [15] Let k ∈ [0,∞) be fixed and qk (z) be the Riemann map of U = {z ∈ C : |z| < 1}
on to Ωk satisfying qk (0) = 1, q′k (0) > 0. If

qk (z) = 1 +Q1 (k) z +Q2 (k) z
2 +Q3 (k) z

3 + · · · , z ∈ U , (7)

then

Q1 = Q1 (k) =



2A2

1− k2
, 0 ≤ k < 1,

8

π2
, k = 1,

π2

4κ2 (t) (k2 − 1) (1− t)
√
t
, k > 1,

Q2 = Q2 (k) = D (k)Q1 (k) ,

where

D = D (k) =



A2 + 2

3
, 0 ≤ k < 1,

2

3
, k = 1,

4κ2 (t)
(
t2 + 6t+ 1

)
− π2

24κ2 (t) (1 + t)
√
t

, k > 1,

A =
2

π
arccos k

and κ (t) is the complete elliptic integral of first kind for details see ([2], [5] and [40]).

In this paper φ(z) = C0 + C1z + C2z
2 + C3z

3 + . . . and |Cn| ≤ 1.
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3. Main results

Theorem 3.1. If f ∈ k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of f given by (3), then

|bm+1| ≤
cQ1

mab
,

|b2m+1| ≤
c (c+ 1)

mab (a+ 1) (b+ 1)

[
Q1 +max

{
Q1,

∣∣∣∣(m− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣Q2
1 + |Q2|

}]
,

and for any complex number µ,

|b2m+1 − µb2m+1|

≤ c (c+ 1)

mab (a+ 1) (b+ 1)

[
Q1 +max

{
Q1,

∣∣∣∣(m+ 2µ− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣Q2
1 + |Q2|

}]
.

Proof. Let f ∈ k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0), then there exist analytic functions

φ and w with |φ(z)| ≤ 1, w(0) = 0 and |w(z)| < 1 such that

z
(
Ha,b

c (f)
)′

(z)(
Ha,b

c (f)
)
(z)

− 1 = φ(z)[qk(w(z))− 1]. (8)

By a simple calculations, we get

z
(
Ha,b

c (f)
)′

(z)(
Ha,b

c (f)
)
(z)

− 1 =
ab

c
a2z +

(
ab (a+ 1) (b+ 1)

c (c+ 1)
a3 −

a2b2

c2
a22

)
z2 + · · · (9)

and

φ(z)[ϕ(w(z))− 1] = Q1C0w1z + [Q1C1w1 + C0(Q1w2 +Q2w
2
1)]z

2 + · · · . (10)

Using (9) and (10) in (8), we have

a2 =
cQ1C0w1

ab
(11)

and

a3 =
c (c+ 1)

ab (a+ 1) (b+ 1)
[Q1C1w1 +Q1w2C0 + C0(Q2 +Q2

1C0)w
2
1]. (12)

For a function f given by (1), a computation shows that

[f(zm)]1/m = z +
1

m
a2z

m+1 +

[
1

m
a3 −

1

2

(
m− 1

m2

)
a2

2

]
z2m+1 + · · · . (13)

Upon equating the coefficients of zm+1 and z2m+1 in view of (2) and (13), we get

bm+1 =
1

m
a2 and b2m+1 =

a3
m

− 1

2

(
m− 1

k2

)
a2

2. (14)

Further, from (11) to (15) , we have

bm+1 =
cQ1C0w1

mab
(15)

and

b2m+1 (16)

=
2abc (c+ 1) [Q1C1w1 +Q1w2C0 + C0(Q2 +Q2

1C0)w
2
1]−

(m− 1) (a+ 1) (b+ 1) c2Q2
1C

2
0w

2
1

m
2ma2b2 (a+ 1) (b+ 1)

.
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Also, for any complex number µ,

b2m+1 − µb2m+1 =
c (c+ 1)Q1

mab (a+ 1) (b+ 1)

{
C1w1 + C0

[
w2 +

Q2

Q1
w2
1 +Q1C0w

2
1 −A1w

2
1

]}
, (17)

where

A1 =
(m+ 2µ− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)
.

Since D =
Q2

Q1
, we get

b2m+1 − µb2m+1 =
c (c+ 1)Q1

mab (a+ 1) (b+ 1)

{
C1w1 + C0

[
w2 + (D +Q1C0 −A1)w

2
1

]}
.

Using the inequalities |Cn| ≤ 1, |wn(z)| ≤ 1, we get |bm+1| ≤
cQ1

mab
and

|b2m+1 − µb2m+1| ≤
c (c+ 1)Q1

mab (a+ 1) (b+ 1)

[
1 +

∣∣w2 + (D +Q1C0 −A1)w
2
1

∣∣] .
An application of Lemma 2.1 to

∣∣w2 − (A1 −D −Q1C0)w
2
1

∣∣, yields
|b2m+1 − µb2m+1| ≤

c (c+ 1)Q1

mab (a+ 1) (b+ 1)
[1 + max {1, |A1 −D −Q1C0|}] .

Since,

|A1 −D −Q1C0| ≤
∣∣∣∣(m+ 2µ− 1) (a+ 1) (b+ 1)Q1

2mab (c+ 1)

∣∣∣∣+ |D|+ |Q1|

and hence conclude that

|b2m+1 − µb2m+1|

≤ c (c+ 1)

mab (a+ 1) (b+ 1)

[
Q1 +max

{
Q1,

∣∣∣∣(m+ 2µ− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣Q2
1 + |Q2|

}]
.

For µ = 0, we get

|b2m+1| ≤
c (c+ 1)

mab (a+ 1) (b+ 1)

[
Q1 +max

{
Q1,

∣∣∣∣(m− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣Q2
1 + |Q2|

}]
.

This essentially completes the proof of Theorem 3.1. �

If m = 1 and µ = 0 in Theorem 3.1 then we have the following corollary.

Corollary 3.1. If f ∈ k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of f given by (3). Then

|b3 − µb22| ≤
c (c+ 1)

ab (a+ 1) (b+ 1)

[
Q1 +max

{
Q1, Q

2
1 + |Q2|

}]
.

Putting the values of Q1 = Q1 (k) and D = D (k) from Lemma 2.4 in Theorem 3.1 for

0 ≤ k < 1, k = 1 and k > 1 respectively, we get the following corollaries.

Corollary 3.2. If f ∈ k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of f given by (3) and 0 ≤ k < 1. Then

|bm+1| ≤
c

mab

(
2A2

1− k2

)
,

|b2m+1| ≤
c (c+ 1)

mab (a+ 1) (b+ 1)

[
+max

{
2A2

1− k2
, A2 +

∣∣∣∣( 2A2

1− k2

)(
A2 + 2

3

)∣∣∣∣}] ,
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and for any complex number µ,

|b2m+1 − µb2m+1|

≤ c (c+ 1)

mab (a+ 1) (b+ 1)

[
2A2

1− k2
+max

{
2A2

1− k2
, A3 +

∣∣∣∣( 2A2

1− k2

)(
A2 + 2

3

)∣∣∣∣}] ,
where

A2 =

∣∣∣∣(m− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣ ( 2A2

1− k2

)2

and

A3 =

∣∣∣∣(m+ 2µ− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣ ( 2A2

1− k2

)2

.

Corollary 3.3. If f ∈ k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of f given by (3) and k = 1. Then

|bm+1| ≤
8c

mabπ2
,

|b2m+1| ≤
c (c+ 1)

mab (a+ 1) (b+ 1)

[
8

π2
+max

{
8

π2
,
64

π4

∣∣∣∣(m− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣+ 16

3π2

}]
,

and for any complex number µ,∣∣b2m+1 − µb2m+1

∣∣
≤ c (c+ 1)

mab (a+ 1) (b+ 1)

[
8

π2
+max

{
8

π2
,
64

π4

∣∣∣∣(m+ 2µ− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣+ 16

3π2

}]
.

Corollary 3.4. If f ∈ k −SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of f given by (3) and k > 1. Then

|bm+1| ≤
c

mab
A4,

|b2m+1| ≤
c (c+ 1)

mab (a+ 1) (b+ 1)
[A4 +max {A4, A5 +A6}] ,

and for any complex number µ,

|b2m+1 − µb2m+1| ≤
c (c+ 1)

mab (a+ 1) (b+ 1)
[A4 +max {A4, A7 +A5}] ,

A4 =
π2

4κ2 (t) (k2 − 1) (1− t)
√
t
,

A5 =

∣∣∣∣(m− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣ (A4)
2

and

A6 =

∣∣∣∣∣
(
4κ2 (t)

(
t2 + 6t+ 1

)
− π2

24κ2 (t) (1 + t)
√
t

)
A4

∣∣∣∣∣ ,
A7 =

∣∣∣∣(m+ 2µ− 1) (a+ 1) (b+ 1)

2mab (c+ 1)
+ 1

∣∣∣∣ (A4)
2.
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Theorem 3.2. If F is the m−th root transformation of f given by (3) and f ∈ A satisfies

z
(
Ha,b

c (f)
)′

(z)(
Ha,b

c (f)
)
(z)

− 1 ≺≺ qk(z)− 1,

then the following inequalities hold:

|bm+1| ≤
cQ1

mab
,

|b2m+1| ≤
c (c+ 1)

mab (a+ 1) (b+ 1)

[
Q1 + |Q2|+

∣∣∣∣1− (m− 1) (a+ 1) (b+ 1)

2mab (c+ 1)

∣∣∣∣Q2
1

]
,

and for any complex number µ,

|b2m+1 − µb2m+1| ≤
c (c+ 1)

mab (a+ 1) (b+ 1)

[
Q1 + |Q2|+

∣∣∣∣1− (m+ 2µ− 1) (a+ 1) (b+ 1)

2mab (c+ 1)

∣∣∣∣Q2
1

]
.

Proof. The result follows by taking w (z) = z in the proof of Theorem 3.1. �

Theorem 3.3. If f ∈ k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of f given by (3), then

|b2m+1 − µb2m+1| ≤



c (c+ 1)Q1

mab (a+ 1) (b+ 1)
(1 +D +Q1C0 −A1) , if µ ≤ σ1,

2c (c+ 1)Q1

mab (a+ 1) (b+ 1)
, if σ1 ≤ µ ≤ σ2,

c (c+ 1)Q1

mab (a+ 1) (b+ 1)
(1 +A1 −D −Q1C0), if µ ≥ σ2,

where

σ1 =
mab (c+ 1)

(a+ 1) (b+ 1) cQ1C0

(
D +Q1C0 −

(m− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)
− 1

)
,

σ2 =
mab (c+ 1)

(a+ 1) (b+ 1) cQ1C0

(
D +Q1C0 −

(m− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)
+ 1

)
.

Proof. From the (17), we have

b2m+1 − µb2m+1 =
c (c+ 1)Q1C1w1

mab (a+ 1) (b+ 1)
+

c (c+ 1)Q1C0

mab (a+ 1) (b+ 1)

[
w2 − (A1 −D −Q1C0)w

2
1

]
.

Using the inequalities |Cn| ≤ 1, |wn(z)| ≤ 1, we get

b2m+1 − µb2m+1 ≤
c (c+ 1)Q1

mab (a+ 1) (b+ 1)
+

c (c+ 1)Q1

mab (a+ 1) (b+ 1)

[∣∣w2 − (A1 −D −Q1C0)w
2
1

∣∣] .
The second result is established by an application of Lemma 2.2.

If A1 −D −Q1C0 ≤ −1, then

µ ≤ mab (c+ 1)

(a+ 1) (b+ 1) cQ1C0

(
D +Q1C0 −

(m− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)
− 1

)
,

which implies that µ ≤ σ1. Where

σ1 =
mab (c+ 1)

(a+ 1) (b+ 1) cQ1C0

(
D +Q1C0 −

(m− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)
− 1

)
.

Hence, we have

b2m+1 − µb2m+1 ≤
c (c+ 1)Q1

mab (a+ 1) (b+ 1)
[1 +D +Q1C0 −A1] ,
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which is the first inequality of the Theorem 3.3. If A1 −D −Q1C0 ≥ 1, then

µ ≥ mab (c+ 1)

(a+ 1) (b+ 1) cQ1C0

(
D +Q1C0 −

(m− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)
+ 1

)
,

which implies that µ ≥ σ2. Where

σ2 =
mab (c+ 1)

(a+ 1) (b+ 1) cQ1C0

(
D +Q1C0 −

(m− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)
+ 1

)
.

Hence, we have

b2m+1 − µb2m+1 ≤
c (c+ 1)Q1

mab (a+ 1) (b+ 1)
[1 +A1 −D −Q1C0] ,

which is the third inequality of the Theorem 3.3. If 1 ≤ A1 −D −Q1C0 ≤ −1, then

b2m+1 − µb2m+1 ≤
2c (c+ 1)Q1

mab (a+ 1) (b+ 1)
,

which is the middle inequality of the Theorem 3.3. This essentially completes the proof of

Theorem 3.3. �

Remark 3.1. For φ (z) = 1 and m = 1, Theorem 3.3 reduces the Theorem 1 in Mishra and

Panigrahi([28]).

Theorem 3.4. If f ∈ k −SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of given by (3), then

|b2m+1 − µb2m+1| ≤



c (c+ 1)Q1

mab (a+ 1) (b+ 1)
(1 +D +Q1C0 −A1), if µ ≤ α2,

2c (c+ 1)Q1

mab (a+ 1) (b+ 1)
, if α2 ≤ µ ≤ α1,

c (c+ 1)Q1

mab (a+ 1) (b+ 1)
(1 +A1 −D −Q1C0), if µ ≥ α1,

where

α1 =
mab (c+ 1)

(a+ 1) (b+ 1) cQ1C0

(
D +Q1C0 −

(m− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)
+ 1

)
,

α2 =
mab (c+ 1)

(a+ 1) (b+ 1) cQ1C0

(
D +Q1C0 −

(m− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)
− 1

)
.

Proof. From the (17), we have

b2m+1 − µb2m+1 =
c (c+ 1)Q1C1w1

mab (a+ 1) (b+ 1)
+

c (c+ 1)Q1C0

mab (a+ 1) (b+ 1)

[
w2 + (D +Q1C0 −A1)w

2
1

]
, (18)

which implies that

b2m+1−µb2m+1 =
c (c+ 1)Q1C1w1

mab (a+ 1) (b+ 1)
+

c (c+ 1)Q1C0

mab (a+ 1) (b+ 1)

[
w2 − w2

1 + (1 +D +Q1C0 −A1)w
2
1

]
.

Using the inequalities |Cn| ≤ 1, |wn(z)| ≤ 1, we get∣∣b2m+1 − µb2m+1

∣∣ (19)

≤ c (c+ 1)Q1

mab (a+ 1) (b+ 1)
+

c (c+ 1)Q1

mab (a+ 1) (b+ 1)

[∣∣w2 − w2
1

∣∣+ (1 +D +Q1C0 −A1) |w1|2
]
.
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Suppose that µ ≥ α1, the expression inside the second modulus symbol on the right hand side

of (19) is non negative. Then, using the estimate
∣∣w2 − w2

1

∣∣ ≤ 1 from Lemma 2.3, we get∣∣b2m+1 − µb2m+1

∣∣ ≤ c (c+ 1)Q1

mab (a+ 1) (b+ 1)
+

c (c+ 1)Q1

mab (a+ 1) (b+ 1)
[1 + (A1 − 1−D −Q1C0)] ,

which implies that

b2m+1 − µb2m+1 ≤
c (c+ 1)Q1

mab (a+ 1) (b+ 1)
[1 +A1 −D −Q1C0] .

This is precisely the last inequality in Theorem 3.4.

On the other hand µ ≤ α2, then (18) gives∣∣b2m+1 − µb2m+1

∣∣ ≤ c (c+ 1)Q1

mab (a+ 1) (b+ 1)
+

c (c+ 1)Q1

mab (a+ 1) (b+ 1)

[
|w2|+ (D +Q1C0 −A1) |w1|2

]
.

Applying estimate |w2| ≤ 1− |w1|2 of Lemma 2.3 and |w1| ≤ 1, we have∣∣b2m+1 − µb2m+1

∣∣
≤ c (c+ 1)Q1

mab (a+ 1) (b+ 1)
+

c (c+ 1)Q1

mab (a+ 1) (b+ 1)

[
1− |w1|2 + (D +Q1C0 −A1) |w1|2

]
,

which implies that∣∣b2m+1 − µb2m+1

∣∣ ≤ c (c+ 1)Q1

mab (a+ 1) (b+ 1)
[1 +D +Q1C0 −A1] .

This is the first inequality in Theorem 3.4.

Lastly, if α2 ≤ µ ≤ α1, then |D +Q1C0 −A1| ≤ 1.

Therefore, (18) yields

b2m+1 − µb2m+1 ≤
2c (c+ 1)Q1

mab (a+ 1) (b+ 1)
,

which is the middle inequality of the Theorem 3.4. This essentially completes the proof of

Theorem 3.4. �

Remark 3.2. For φ (z) = 1 and m = 1, Theorem 3.4 reduces the Theorem 1 in Mishra and

Panigrahi([28]).

Remark 3.3. Applying Lemma 2.2 and Lemma 2.3 to (17), we get the same results as in

Theorem 3.3 and Theorem 3.4.

Putting the values of Q1 = Q1 (k) and D = D (k) from Lemma 2.4 in Theorem 3.4 for

0 ≤ k < 1, k = 1 and k > 1 respectively, we get the following corollaries.

Corollary 3.5. If f ∈ k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of f given by (3) and 0 ≤ k < 1. Then

|b2m+1 − µb2m+1|

≤



2A2c (c+ 1)

mab (a+ 1) (b+ 1) (1− k2)

(
1 +

A2 + 2

3
+

2A2C0

1− k2
−A8

)
, if µ ≤ β2,

4A2c (c+ 1)

mab (a+ 1) (b+ 1) (1− k2)
, if β2 ≤ µ ≤ β1,

2A2c (c+ 1)

mab (a+ 1) (b+ 1) (1− k2)

(
1 +A8 −

A2 + 2

3
− 2A2C0

1− k2

)
, if µ ≥ β1,

where

A8 =
(m+ 2µ− 1) (a+ 1) (b+ 1)A2cC0

mab (c+ 1) (1− k2)
,
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β1 =
mab (c+ 1)

(a+ 1) (b+ 1) cC0

((
A2 + 2

) (
1− k2

)
6A2

+ C0 −
(m− 1) (a+ 1) (b+ 1) cC0

2mab (c+ 1)
+ 1

)
and

β2 =
mab (c+ 1)

(a+ 1) (b+ 1) cC0

((
A2 + 2

) (
1− k2

)
6A2

+ C0 −
(m− 1) (a+ 1) (b+ 1)C0

2mab (c+ 1)
− 1

)
.

Corollary 3.6. If f ∈ k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of f given by (3) and k = 1. Then

|b2m+1 − µb2m+1| ≤



8c (c+ 1)

mab (a+ 1) (b+ 1)π2

(
1 +

2

3
+

8C0

π2
−A9

)
, if µ ≤ χ2,

16c (c+ 1)

mab (a+ 1) (b+ 1)π2
, if χ2 ≤ µ ≤ χ1,

8c (c+ 1)

mab (a+ 1) (b+ 1)π2

(
1 +A9 −

2

3
− 8C0

π2

)
, if µ ≥ χ1,

where

A9 =
4 (m+ 2µ− 1) (a+ 1) (b+ 1) cC0

mab (c+ 1)π2
,

χ1 =
mab (c+ 1)

(a+ 1) (b+ 1) cC0

(
π2

12
+ C0 −

(m− 1) (a+ 1) (b+ 1) cC0

2mab (c+ 1)
+ 1

)
and

χ2 =
mab (c+ 1)

(a+ 1) (b+ 1) cC0

(
π2

12
+ C0 −

(m− 1) (a+ 1) (b+ 1) cC0

2mab (c+ 1)
− 1

)
.

Corollary 3.7. If f ∈ k − SP a,b
c (0 ≤ k < ∞, a, b, c ∈ R, a, b, c > 0) and F is the m−th root

transformation of f given by (3) and k > 1. Then

|b2m+1 − µb2m+1|

≤



c (c+ 1)π2

4mab (a+ 1) (b+ 1)κ2 (t) (k2 − 1) (1− t)
√
t
(1 +A12 −A10), if µ ≤ δ2,

c (c+ 1)π2

2mab (a+ 1) (b+ 1)κ2 (t) (k2 − 1) (1− t)
√
t
, if δ2 ≤ µ ≤ δ1,

c (c+ 1)π2

4mab (a+ 1) (b+ 1)κ2 (t) (k2 − 1) (1− t)
√
t
(1 +A10 −A12), if µ ≥ δ1,

where

A10 =
(m+ 2µ− 1) (a+ 1) (b+ 1)π2cC0

4mab (c+ 1)κ2 (t) (k2 − 1) (1− t)
√
t
,

A11 =
κ2 (t)

(
k2 − 1

)
(1− t)

√
t

π2

(
4κ2 (t)

(
t2 + 6t+ 1

)
− π2

24κ2 (t) (1 + t)
√
t

)
,

A12 =

(
4κ2 (t)

(
t2 + 6t+ 1

)
− π2

24κ2 (t) (1 + t)
√
t

)
+

π2C0

4κ2 (t) (k2 − 1) (1− t)
√
t
,

δ1 =
mab (c+ 1)

(a+ 1) (b+ 1) cC0

(
A11 + C0 −

(m− 1) (a+ 1) (b+ 1) cC0

2mab (c+ 1)
+ 1

)
and

δ2 =
mab (c+ 1)

(a+ 1) (b+ 1) cC0

(
A11 + C0 −

(m− 1) (a+ 1) (b+ 1) cC0

2mab (c+ 1)
− 1

)
.
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4. Improvements of the main results

In this section, we discuss the improvements of the second inequality in Theorem 3.4.

Remark 4.1. The second inequality in Theorem 3.4 can be improved as follows:

|b2m+1 − µb2m+1|+ |µC0 − |α2|| |bm+1|2 ≤
2c (c+ 1)Q1

mab (a+ 1) (b+ 1)
, if α2 ≤ µ ≤ α3,

and

|b2m+1 − µb2m+1|+ ||α1| − µC0| |bm+1|2 ≤
2c (c+ 1)Q1

mab (a+ 1) (b+ 1)
, if α3 ≤ µ ≤ α1,

where

α3 =
mab (c+ 1)

(a+ 1) (b+ 1) cQ1C0

(
D +Q1C0 −

(m− 1) (a+ 1) (b+ 1) cQ1C0

2mab (c+ 1)

)
.

Putting the values of Q1 = Q1 (k) and D = D (k) from Lemma 2.4 in Theorem 3.4 for

0 ≤ k < 1, k = 1 and k > 1 respectively, we get the following remarks.

Remark 4.2. Putting the values of Q1 = Q1 (k) and D = D (k) from Lemma 2.4 in Theorem

3.4 for 0 ≤ k < 1 in Remark 4.1 and the second inequality in Corollary 3.5 can be improved as

follows:

|b2m+1 − µb2m+1|+ |µC0 − |β2|| |bm+1|2 ≤
4A2c (c+ 1)

mab (a+ 1) (b+ 1) (1− k2)
, if β2 ≤ µ ≤ β3,

and

|b2m+1 − µb2m+1|+ ||β1| − µC0| |bm+1|2 ≤
4A2c (c+ 1)

mab (a+ 1) (b+ 1) (1− k2)
, if β3 ≤ µ ≤ β1,

where

β3 =
mab (c+ 1)

(a+ 1) (b+ 1) cC0

((
A2 + 2

) (
1− k2

)
6A2

+ C0 −
(m− 1) (a+ 1) (b+ 1) cC0

2mab (c+ 1)

)
.

Remark 4.3. Putting the values of Q1 = Q1 (k) and D = D (k) from Lemma 2.4 in Theorem

3.4 for k = 1 in Remark 4.1 and the second inequality in Corollary 3.6 can be improved as

follows:

|b2m+1 − µb2m+1|+ |µC0 − |χ2|| |bm+1|2 ≤
16c (c+ 1)

mab (a+ 1) (b+ 1)π2
, if χ2 ≤ µ ≤ χ3,

and

|b2m+1 − µb2m+1|+ ||χ1| − µC0| |bm+1|2 ≤
16c (c+ 1)

mab (a+ 1) (b+ 1)π2
, if χ3 ≤ µ ≤ χ1,

where

χ3 =
mab (c+ 1)

(a+ 1) (b+ 1) cC0

(
π2

12
+ C0 −

(m− 1) (a+ 1) (b+ 1) cC0

2mab (c+ 1)

)
.

Remark 4.4. Putting the values of Q1 = Q1 (k) and D = D (k) from Lemma 2.4 in Theorem

3.4 for k > 1 in Remark 4.1 and the second inequality in Corollary 3.7 can be improved as

follows:

If δ2 ≤ µ ≤ δ3

|b2m+1 − µb2m+1|+ |µC0 − |δ2|| |bm+1|2 ≤
c (c+ 1)π2

2mab (a+ 1) (b+ 1)κ2 (t) (k2 − 1) (1− t)
√
t
,
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and if δ3 ≤ µ ≤ δ1

|b2m+1 − µb2m+1|+ ||δ1| − µC0| |bm+1|2 ≤
c (c+ 1)π2

2mab (a+ 1) (b+ 1)κ2 (t) (k2 − 1) (1− t)
√
t
,

where

δ3 =
mab (c+ 1)

(a+ 1) (b+ 1) cC0

(
A11 + C0 −

(m− 1) (a+ 1) (b+ 1) cC0

2mab (c+ 1)

)
.

5. Conclusion

In this article, we provide the coefficient estimate withm−th root transform for a class defined

by Hohlov operator using quasi-subordination for conic domains. The authors sincerely hope

this article will revive this concept and encourage the other researchers to work in this quasi

subordination in the near future in the area of complex function theory.
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functions with respect to convex functions, Publ. Inst. Math. Nouvelle série, 101(115), pp.143-149.
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