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ON COMPLETENESS OF A PART OF EIGEN AND ASSOCIATED

VECTORS OF A QUADRATIC OPERATOR PENCIL FOR A

DOUBLE-POINT BOUNDARY VALUE PROBLEM

S.S. MIRZOYEV1,2, S.F. BABAYEVA1,3

Abstract. In the paper we study some spectral properties of a quadratic operator pencil, solv-

ability of one type of double-point boundary value problem for elliptic type operator-differential

equation. Here, at first analytic properties of the resolvent of a quadratic pencil, structure

of the spectrum of the given operator pensil are studied. Then the completeness of a part of

the system of eigen and associated vectors of the space of traces of regular solutions and also

completeness of descending elementary solutions in the space of all regular solutions of a homo-

geneous equation, are proved. All obtained results are expressed in terms of the properties of

the coefficients of the given quadratic pencil.
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1. Introduction

Many problems of mechanics, mathematical physics, partial differential equations are reduced

to studying the completeness of the system of eigen and associated vectors of quadratic pencils

in different spaces [1, 4, 8, 10, 14, 17-21]. In [5, 6] first introduced the notion of multiple

completeness of the system of eigen and associated vectors for higher order operator pencils and

proved a theorem on multiple completeness of the system of eigen and associated vectors of one

type of pencils called the Keldysh pencils. He connected the notion of multiple completeness

of the system of eigen and associated vectors with the Cauchy problem in Hilbert space for

corresponding operator-differential equation. Then, there appeared numerous works in this field

(see e.g. [19] and references therein).

New promotion in the problems of completeness of eigen and associated vectors was obtained

in [2-4]. In this paper, the multiple completeness of a part of eigen and associated vectors

responding to eigen values from the left half-plane, was studied. He connected this problem

with solvability of the initial boundary value problem in an infinite domain. Further, these

results were developed in the works [9-16]. In [9-16] was suggested a new method for obtaining

exact values of the norms of operators of intermediate derivatives in Sobolev-type spaces and

used them for obtaining exact conditions of solvability of different boundary value problems in a

semi-axis. After these works for operator-differential equations the completeness of the system

of elementary solutions was obtained (see: e.g. [3, 12, 15]).
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In [10] the solvability conditions of one double-point boundary value problem were obtained

and the obtained result was applied to solvability of one mixed problem for partial differential

equations of elliptic type. In the paper we used the methods of the works [2, 3, 5, 6, 10, 12, 13,

15].

2. Some necessary notion and functional spaces

In a separable Hilbert space H we consider a quadratic pencil of operators

P (λ) = −λ2E + λA1 +A2 +A2, (1)

where E is a unit operator in H, λ is a spectral parameter, and the coefficients of the pencil (1)

satisfy the conditions:

(1) A is a positive-definite self-adjoint operator with completely continuous inverse A−1;

(2) The operators Bj = Aj A
−j (j = 1, 2) are bounded in H.

If operator A satisfies the condition (1), and {ℓn}∞n=1 is an orthonormed basis of eigen vectors,

i.e. Aℓn = λn ℓn, (ℓn ℓm) = δn,m =

{
1, n = m

0, n ̸= m
, then the domain of definition of the operator

Aγ (γ ≥ 0)

D (Aγ) =

{
x : x ∈ H;

∞∑
n=1

λ2γn |x, ℓn|2 <∞

}
is a Hilbert space with respect to the scalar product (x, y)γ = (Aγx, Aγy), x, y ∈ D (Aγ). For

γ = 0 we assume H0 = H.

Definition 2.1. If the equation P (µn) x0, n, j = 0 has a nonzero solution x0, n, j ∈ H2, then µn
is called a characteristic numbers of the pencil P (λ), while x0, n, j an eigen-vector responding to

µn. If the vectors x0, n, j , x1, n, j , ... , xh, n, j ∈ H2, h = 0, mn, j, j = 1, qn satisfy the equations

P (µn) xh, n, j + ...+ P ′ (µn) xh−1, n, j +
P ′′ (µn)

2!
xh−2, n−j = 0, h = 0, mn, j ,

then x0, n, j , x1, n, j , ... , xh, n, j, h = 0, mn, j, j = 1, qn are said to be eigen and associated vectors

responding to µn. If the system {xh, n, j}∞n=1, h = 0, mn, j, j = 1, qn are eigen and associated

vectors of the pencil, responding to µn, then the functions

uh, n, j (t) = ℓµn t

(
th

h!
x0, n, j +

th−1

(h− 1)!
x1, n, j + ...+ xh, n, j

)
, h = 0, mn, j , q = 1, jn

satisfy the equation P (d/dt) u (t) = 0 and are called elementary solutions of the equation

P (d/dt) u (t) = 0.

We associate the operator pencil P (λ) with the boundary value problem

P (d/dt) u (t) = −u′′ (t) +A2 u (t) +A1 u
′ (t) +A2 u (t) = 0, t ∈ R+, R+ = (0, ∞) , (2)

u (0)− ε u (1) = φ, (3)

where f (t), u (t) are the functions determined in R+ = (0, ∞) almost everywhere with the

values in H, ε is generally speaking a complex number, φ ∈ H. Here and in the sequel, the

derivatives are understood in the sense of distribution theory [1].
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Denote by L2 (R+; H) Hilbert space of all functions f (t), determined almost everywhere in

R+ = (0, ∞), with the values in H, for which

∥f∥L2(R+;H) =

 ∞∫
0

∥f (t)∥2 dt

1/2

<∞.

Following the monograph [7], we determine the Hilbert space

W 2
2 (R+; H) =

{
u : u′′ ∈ L2 (R+; H) , A2u ∈ L2 (R+; H)

}
with the norm

∥u∥W 2
2 (R+;H) =

(∥∥A2u
∥∥2
L2(R+;H)

+
∥∥u′′∥∥2

L2(R+;H)

)1/2
.

By the theorem on intermediate derivatives it follows that if u (t) ∈W 2
2 (R+; H), thenA2−j u(j) ∈

L2 (R+; H), u(j) (0) ∈ H2−j−1/2, j = 0, 1, and∥∥∥A2−j u(j)
∥∥∥
L2(R+;H)

≤ const ∥u∥W 2
2 (R+;H) ,∥∥∥u(j) (0)∥∥∥

2−j−1/2
≤ const ∥u∥W 2

2 (R+;H) , j = 0, 1.

Definition 2.2. If for φ ∈ H3/2 there exists a function u ∈W 2
2 (R+; H) satisfying equation (2)

almost everywhere in R+, the boundary condition (2) in the sense of convergence

lim
t→+0

∥u (t)− ε u (1− t)− φ∥3/2 = 0

and the estimation ∥u∥W 2
2 (R+;H) ≤ const ∥φ∥3/2 holds, then problem (2), (3) is said to be regu-

larly solvable.

In this paper we prove completeness of elementary decreasing solutions in the space of all

regular solutions of problem (2), (3). To this end, at first we will study some spectral properties

of the pencil P (λ) and regular solvability of problem (2), (3).

Note that for ε = 0, problem (2), (3) was studied in the works [3, 12].

3. Some spectral properties of the operator pencil (1)

We have

Lemma 3.1. Let conditions 1), 2) be fulfilled, and the operator E + A2A
−2 be invertible in

H. Then the operator pencil P (λ) has only discrete spectrum with a unique limit point at

infinity. If A−1 ∈ σρ (0 < ρ <∞), i.e.
∑∞

n=1 λ
−ρ
n < ∞, then the operator-function A2 P−1 (λ)

is represented in the form of ratio of two entire functions of order not higher than ρ and of

minimal type with order ρ.

Proof. As

P (λ) = λ2E + λA1 +A2 +A2 =
(
−λ2A−2 + E + λ

(
A1A

−1
)
A−1 +A2A

−2
)
A2 =

=
(
−λ2A−2 + λB1A+ E +B2

)
A2 =

= (E +B2)
(
−λ2 (E +B2)

−1A−2 + λ (E +B2)
−1B1A

−1 + E
)
A2 =

= (E +B2) L (λ) A2,

where L (λ) = −λ2 (E +B2)
−1A−2 + λ (E +B2)

−1B1A
−1.
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Obviously, coefficients of L2 (λ) are a completely continuous operators for any λ ∈ C, and
E +L (0) = E is invertible in H. Then by the Keldysh lemma [7] the operator pencil E +L (λ)

has only a discrete spectrum with a unique limit point at infinity. Then these properties refer

to the pencil P (λ) as well. On the other hand, if A−1 ∈ σρ (0 < ρ <∞), then the coefficients

of L (λ) with degrees λ are the operators of (E +B2)
−1A−2 ∈ σρ/2, (E +B2)

−1B1A
−1 ∈

σρ, therefore, by the Keldysh lemma [5, 6] L (λ) is represented in the form of ratio of two

entire functions of order not higher than ρ and of minimal type with order ρ. As P−1 (λ) =

A−2 L−1 (λ) (E +B2)
−1, then the operator

A2 P−1 (λ) = L−1 (λ) (E +B2)
−1

the function also has such a property. The lemma is proved. �

Now let us prove a theorem on estimations of the resolvent on some pencils.

Theorem 3.1. Let conditions 1), 2) be fulfilled, and let α ∈ (0, π/2]. Then subject to the

inequalities
1

2
∥B1∥+ ∥B2∥ < sin α, α ∈ (0, π/2]

on the rays Γ±α = {λ : arg λ = ±α} there exists a resolvent P−1 (λ) and on these rays we have

the estimation

|λ|2−β
∥∥∥Aβ P−1 (λ)

∥∥∥ ≤ const, β ∈ [0, 2] . (4)

Proof. Let λ ∈ Γα, then λ = r ei α, r > 0 and

P (λ) = P
(
r eiα

)
= −r2 e2iαE +A2 + r eiαA1 +A2 =

=
(
E + r eiαA1A

−1A
(
−r2 e2iα +A2

)−1
+A2A

−2A2
(
−r2 e2iα +

(
−r2 eiαE +A2

)))
=

= (E + S) ·
(
−r2 e2iα +A2

)
. (5)

On the other hand,

∥S∥ =
∥∥∥r eiαA1A

−1A
(
−r2 e2iα +A2

)−1
+A2A

−2A2
(
−r2 e2iα +A2

)−1
∥∥∥ ≤

≤ ∥B1∥ ·
∥∥∥r A (

−r2 e2iα +A2
)−1

∥∥∥+ ∥B2∥ ·
∥∥∥A2

(
−r2 e2α +A2

)−1
∥∥∥ . (6)

From the spectral expansion of the operator A it follows that∥∥∥r A (
−r2 e2iα +A2

)−1
∥∥∥ = sup

λn

∣∣∣r λn (
r2 + e2iα + λ2n

)−1
∣∣∣ =

= sup
λn

∣∣∣r λn (
r4 + λ4n − 2r2n λ

2
n cos 2α

)−1
∣∣∣ =

= sup
λn

∣∣∣r λn (
r2 + λ2n

)2 − 2r2λ2n (1 + cos 2α)
∣∣∣ ≤

≤ sup
λn

∣∣∣∣r λn ((
r2 + λ2n

)2 − (
r2 + λ2n

)2
cos2 α

)1/2
∣∣∣∣ =

= sup
λn

∣∣λrn (
r2n + λ2n

)∣∣ · sin−1 α ≤ 1

2
sin−1 α . (7)

In the same way we have:∥∥∥A2A
−2A2

(
−r2 e2iα +A2

)−1
∥∥∥ ≤ ∥B2∥ sup

λn

∣∣∣λ2n (
λ2n + ε2

)−1
∣∣∣ · sin−1 α ≤ ∥B2∥ sin−1 α . (8)



S.S. MIRZOYEV, S.F. BABAYEVA: ON COMPLETENESS OF A PART OF EIGEN ... 87

Taking into account inequalities (7) and (8) in the inequality (6) we have

∥S∥ ≤
(
1

2
∥B1∥+ ∥B2∥

)
· sin−1 α < q < 1.

Then the operator E + S is invertible, and from equality (5) we get

P−1 (λ) =
(
−r2 e2iα +A2

)−1
(E + S)−1 ,

therefore

|λ|2−β
∥∥∥Aβ P−1 (λ)

∥∥∥ ≤ |λ|2−β
∥∥∥Aβ

(
−r2 e2iα +A2

)−1
∥∥∥×

×
∥∥∥(E + S)−1

∥∥∥ ≤ 1

1− q
|λ|β

∥∥∥Aβ
(
−r2 e2iα +A2

)−1
∥∥∥ . (9)

Obviously, ∥∥∥Aβ
(
−r2 e2α +A2

)−1
∥∥∥ = sup

λn

∣∣∣λβn (
−r2e2iα + λ2n

)−1
∣∣∣ =

= sup
λn

∣∣∣λβn (
r4 + λ4n − 2r2λ2n

)−1
∣∣∣ ≤

≤ sup
λn

∣∣∣λβn (
r2 + λ2n

)−1
sin−1 α

∣∣∣ = sup
λn

∣∣r λn (
r2n + λ2n

)∣∣ · sin−1 α ≤ 1

2
sin−1 α.

Consequently, from equality (9) it follows

|λ|2−β
∣∣∣λβn (

−r2e2iα + λ2n
)−1

∣∣∣ ≤ ∣∣∣r2−βλβn
(
r2 + λ2n

)−1
sin−1 α

∣∣∣ ≤
≤ sup

τ>0

(
τ2−β

(
r1 + 1

)−1
sin−1 α

)
≤

 1, β = 0, β = 2,(
2−β
2

) 2−β
2 ·

(
β
2

)β/2
, β ∈ (0, 2) .

Thus, from inequality (9) we have

|λ|2−β
∥∥∥Aβ P−1 (λ)

∥∥∥ ≤ 1

1− q
· d (β) = const,

where

d (β) =

 1, β = 0, 2,(
2−β
2

) 2−β
2 ·

(
β
2

)β/2
, β ∈ (0, 2) .

Theorem is proved �

From this theorem we have.

Corollary 3.1. Let the conditions of theorem 3.1 be fulfilled. Then for sufficiently small θ > 0 on

the sectors S±θ =
{
λ : λ = r e±i (α+δ), |δ| < θ

}
there exists a resolvent P−1 (λ) and estimations

(4) hold on these sectors.

Proof. For simplicity we prove the corollary for α = π/2. Then

P (λ) = P (iξ) + ξ2
(
e2iδ − 1

)
+ iξA1

(
eiδ − 1

)
=

= P (iξ) + ξ2
(
e2iδ − 1

)
+ iξB1A

(
eiδ − 1

)
=

=
(
E + ξ2

(
e−2iδ − 1

)
P−1 (iξ) +B1iξ

(
e2iδ − 1

))
P (iξ) .

On the other hand, for sufficiently small θ and |δ| < θ∥∥∥ξ2 (e2iδ − 1
)
P−1 (λ) +B1iξA

(
eiδ − 1

)∥∥∥ < 1

2
.
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Then, it is obvious that P (iξ) exists on the sectors S±θ and on these sectors

|λ|2−β
∥∥∥Aβ P−1 (λ)

∥∥∥ ≤ 2 |λ|2−β
∥∥∥Aβ P−1 (iξ)

∥∥∥ ≤ const.

The Corollary is proved. �

Let Ko = {xh, n, j}∞n=1, h = 0, minj , j = 1, qn be eigen and associated vectors corresponding

to characteristic values µn from the left half-plane i.e. Reµn < 0. Then, obviously, xh, n, j =

uh, n, j (0) ∈ H3/2. Let us construct the system

ψh, n, j = uh, n, j (0)− ε uh, n, j (1) ≡ xh, n, j − ε

h, n, j∑
q=0

∂qeλ

q!∂λq

∣∣∣∣
λ=λi

xh−q, n, j

and denote by Kε = {ψh, n, j}∞n=1, h = 1, mnj , j = 1, qn.

Our goal is to prove the completeness of the system Kε in the space H3/2, and by means

of this fact to obtain a theorem on elementary decreasing solutions of (1)-(3) in the space of

obtained solutions of the problem (2)-(3).

4. On regular solvability of problem (2), (3)

Using the results of the paper [10], we will prove a theorem on regular solvability of problem

(2), (3). At first we give the results that we need, from the paper [10].

Lemma 4.1 (10). Let φ ∈ H3/2. Then e−tAφ ∈W 2
2 (R+; H), and∥∥A2e−tAφ

∥∥
L2(R+;H)

≤ 1√
2
∥φ∥3/2 ,∥∥e−tAφ

∥∥
W 2

2 (R+;H)
≤ ∥φ∥3/2 .

Theorem 4.1 (10). Let conditions 1), 2) be fulfilled, the operator
(
E − ε e−A

)−1
have a bounded

inverse determined in H, and

q (ε) = C1 (ε) ∥B1∥+ C2 (ε) ∥B2∥ < 1
(
Bj = AjA

−j , j = 1, 2
)
,

where

C1 (ε) =
1

2
+

|ε|√
2

∥∥∥(E − e−A
)−1

∥∥∥ =
1

2
+

|ε|
2

sup
n

∣∣∣1− e−λn

∣∣∣−1
,

C2 (ε) = 1 +
|ε|
2

∥∥∥(E − e)−1
∥∥∥ = 1 +

|ε|
2

sup
n

∣∣∣1− e−λn

∣∣∣−1
.

Then the problem

P (d/dt) w (t) = g (t) , t ∈ R+, (10)

w (0) − εw (1) = 0 (11)

is regularly solvable.

Regular solvability of problem (10), (11) means that for any g (t) ∈ L2 (R+; H) there exists a

unique w (t) ∈ W 2
2 (R+; H) that satisfies equation (10) almost everywhere in R+ = (0, ∞) and

boundary condition (11) in the sense of convergence

lim
t→0

∥w (t)− w (1− t)∥3/2 = 0.

At first we consider the boundary value problem

P − u′′ (t) +A2u (t) = 0, t ∈ R+, (12)
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u (0) − ε u (1) = φ. (13)

We have

Lemma 4.2. Let the operator E − ε e−A has a bounded inverse determined in the space H.

Then the problem (12), (13) is regularly solvable.

Proof. The general form of the solution (11) from the space W 2
2 (R+; H) is of the form

uo (t) = e−tAx, x ∈ H3/2.

From condition (12) it follows that
(
E − ε e−A

)
x = φ, i.e. x =

(
E − ε e−A

)−1
φ. As

∥u∥W 2
2 (R+;H) =

∥∥∥e−tA
(
E − e−A

)−1
φ
∥∥∥
W 2

2 (R+;H)
=

∥∥∥(E − εe−A
)−1

∥∥∥ ·
∥∥e−tA φ

∥∥
W 2

2 (R+;H)
.

Applying lemma 4.1, we get ∥u∥W 2
2 (R+;H) ≤

∥∥∥(E − ε e−A
)−1

∥∥∥ · ∥φ∥3/2, i.e. problem (11), (12)

is regularly solvable. �

We have

Theorem 4.2. Let all conditions of Theorem 4.1 be fulfilled. Then, problem (2), (3) is regularly

solvable.

Proof. After substitution u (t) = w (t)+ e−tAx, where w (t) ∈W 2
2 (R+; H), while uo (t) = e−tAx

is a regular solution of problem (10), (11), with respect to w (t) we get the following boundary

value problem

P (d/dt) w (t) = g (t) , t ∈ R+, (14)

w (0) − εw (1) = 0, (15)

as x =
(
E − ε e−A

)−1
φ, x ∈ H3/2. Here the function g (t) = A1

d
dt e

−tAx+ A2 e
−tA. Show that

g (t) ∈ L2 (R+; H). As

∥g (t)∥L2(R+;H) ≤
∥∥A1A

−1
∥∥ ∥∥∥∥A d

dt
e−tAx

∥∥∥∥+
∥∥A2A

−2
∥∥ ∥∥A2 e−tAx

∥∥
L2

=

= (∥B1∥+ ∥B2∥)
∥∥A2 e−tAx

∥∥
L2(R+;H)

.

Applying lemma 4.1, we get

∥g (t)∥L2(R+;H) ≤
1√
2
(∥B1∥+ ∥B2∥) ∥x∥3/2 =

=
1√
2
(∥B1∥+ ∥B2∥)

∥∥∥(E − ε e−A
)−1

∥∥∥ · ∥φ∥3/2 <∞,

i.e. g (t) ∈ L2 (R+; H). Then from theorem 4.1 it follows that problem (14), (15) is regularly

solvable, and therefore, problem (2), (3) is regularly solvable.

The theorem is proved. �
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5. On the completeness of the system Kε

Using the results on the estimations of the norm of the resolvent on some rays and regular

solvability, we will prove the completeness of the system Kεin the space H3/2 and completeness

of the system of elementary solutions of regular decreasing solutions in the space of all regular

solutions of problem (2), (3).

Theorem 5.1. Let conditions 1), 2) be fulfilled, then the operator E−ε e−A has bounded inverse

on the space H, and one of the following conditions holds:

a) A−1 ∈ σρ (0 < ρ <∞) and we have the inequality

C1 (ε) ∥B1∥+ C2 (ε) ∥B2∥ <

{
1 , 0 < ρ ≤ 1 ,

sin π
2ρ , 1 ≤ ρ <∞ ,

b) A−1 ∈ σρ (0 < ρ <∞), the operators B1 and B2 are completely continuous in H, and

C1 (ε) ∥B1∥+ C2 (ε) ∥B2∥ < 1,

where the numbers C1 (ε) and C2 (ε) are determined from theorem 4.1. Then the system

Kε = {ψn, j, h}∞n=1, j = 1, qn, h = 0, mnj is complete in the space H3/2.

Proof. At first prove that the system {xh, n, j}∞n=1, h = 0, mnj , j = 1, qn is complete inH3/2 (case

ε = 0). Obviously, if the system {xh, n, j}∞n=1, h = 0, mnj , j = 1, qn is not complete in H3/2, then

there exists a vector φ ∈ H3/2, such that (xh, n, j , ψ)3/2 = 0, n = 1, ∞, h = 0, mnj , j = 1, qn.

Then from expansion of the resolvent in the neighborhood of characteristic numbers it follows

that the vector
(
A3/2 P−1 (λ)

)∗
A3/2 will be holomorphic in the half-plane Π = {λ : Reλ < 0}.

If u0 (t) is the solution of problem (12), (13) for ε = 0, we can represent it in the form

u (t) =
1

2πi

i∞∫
−i∞

û (λ) eλtdλ, (16)

where û (λ) = P−1 (λ) ((λE +A1)u (0) + u′ (0)). From theorem 1 and its Corollary it follows

that there exists a sufficiently small θ > 0 in the sectors Γ±θ =
{
λ : λ = r e±i (π/2+δ), 0 ≤ δ < 0,

r > 0}, the resolvent has the estimation
∥∥P−1 (λ)

∥∥ ≤ const |λ|−2. Therefore, in formula (16) the

integration contour may be replaced by the rays Γ±α =
{
λ : λ = r e±i (π/2+θ), r > 0

}
. Then,

for t > 0

(u (t) , φ)3/2 =
1

2πi

∫
Γ±θ

(
(λE +A1)u (0) + u′ (0)

(
A3/2 P−1 (λ)

)∗
A3/2φ

)
eλtdλ.

�

As û (λ) is the Laplacian transformation u (t) ∈ W 2
2 (R+; H), then it is holomorphic in the

right half-plane and has finite limit points on the imaginary axis. Therefore û (λ) is an en-

tire function, and ∥û (λ)∥ → 0 as λ → ∞ (Reλ > 0). In the case a), using the estimation

∥û (λ)∥ ≤ const |λ|1/2 (see theorem 1) and then applying the Phragmen-Lindelöf theorem, we

get that û (λ) = a0, a0 ∈ H then for t > 0 (u (t) , φ)3/2 = 0. Passing to limit, we get that

φ = 0, i.e. the system {xh, n, j}∞n=1, h = 0, mnj , j = 1, qn is complete in H3/2. On the other

hand, in the case b) this statement is obtained from the estimations of the resolvent in the angles

whose angle is less than π/ρ. For proving the completeness of the system {ψh, n, j}∞n=1, j = 1, qn,

h = 1, mnj we determine some bounded operator T : H3/2 → H3/2, that maps the system
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{xh, n, j}∞n=1, h = 1, mnj , j = 1, qn complete in H3/2, onto the system {ψh, n, j}∞n=1, h = 1, mnj ,

j = 1, qn.

Let φ ∈ H3/2. Then subject to the conditions of the theorem, problem (2), (3) is regularly

solvable for ε = 0, i.e. for any φ ∈ H3/2 there exists a regular solution of problem (2), (3) for

ε = 0 for which we have the inequality

C1 ∥φ∥3/2 ≤ ∥uo∥W 2
2 (R+;H) ≤ C2 ∥φ∥3/2 .

Then, obviously, the vector ψ = u (0) − ε u (1) ∈ H3/2 (ε ̸= 0). Then the equation

P (d/dt) u (t) = 0 with the initial condition u (0) − ε u (1) = ψ, has a regular solution uε (t).

Obviously,

d1 ∥ψ∥3/2 ≤ ∥uε (t)∥ ≤ d2 ∥ψ∥3/2 .

Now, determine the operator T : H3/2 → H3/2 in the following way: T φ = ψ. Obviously,

∥T φ∥3/2 = ∥ψ∥3/2 ≤ const ∥uε (t)∥W 2
2 (R+;H) ≤

≤ const ∥ψ∥3/2 ≤ const
(
∥u (0)∥3/2 + ε ∥u (1)∥3/2

)
≤

≤ const ∥u∥W 2
2 (R+;H) ≤ const ∥φ∥3/2 ,

i.e. the operator T is bounded. From the equation T φ = 0 it follows that ψ = 0, then uε (t) = 0.

Hence we get ψ = 0. Then uε (t) ≡ 0, i.e. uε (0) = 0. Then φ = 0. Obviously T : H3/2 → H3/2

is an isomorphism, and

Txh, n, j = ψh, n, j , h = 1, ∞, j = 1, qn, h = 0, mnq

Hence we get that the system {ψh, n, j}∞n=1 is complete in H3/2.

From this theorem we get

Theorem 5.2. Let the conditions of Theorem 3.1 be fulfilled. Then the system of elementary

solutions of the homogeneous equation is complete in the space of regular solutions of problem

(2), (3).

Proof. As the system {ψh, n, j}∞n=1, h = 0, mn, j = 1, qn is complete in H3/2, then for any ε > 0

we can find a number C
(P )
ε,N such that∥∥∥∥∥∥ψ −

∑
(P )

N∑
h=η

C(h)
p, n (ε) ψh, n, j

∥∥∥∥∥∥ < ε.

As ψ = u (0)− ε u (1), and ψh, n, j = uh, n, j (0)− ε uh, n, j (1), then∥∥∥∥∥∥u (t)−
∑
(p)

N∑
n=1

C(h)
p, n (ε) un, h, j(t)

∥∥∥∥∥∥
W 2

2 (R+;H)

≤ ε · const < ε1,

where ε1 > 0 is any number. �

The theorem is proved.
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6. Conclusion

There is researched one type of double-point boundary value problem for elliptic type operator-

differential equation. In the paper we study some spectral properties of a quadratic operator

pencil, solvability of considered equation. At first we study analytic properties of the resolvent

of a quadratic pencil, structure of the spectrum of the given operator pensil, the completeness

of a part of the system of eigen and associated vectors of the space of traces of regular solutions.

We also proved completeness of descending elementary solutions in the space of all regular

solutions of a homogeneous equation. All obtained results are expressed by the properties of the

coefficients of the given quadratic pencil.
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