
TWMS J. Pure Appl. Math., V.10, N.1, 2019, pp.58-75

HIGHER ORDER RIESZ TRANSFORMS RELATED TO SCHRÖDINGER

TYPE OPERATOR ON LOCAL GENERALIZED MORREY SPACES

V.S. GULIYEV1,2,3, A. AKBULUT4, S. CELIK4, M.N. OMAROVA2,3

Abstract. In this paper, we study the boundedness of the higher order Riesz transforms R,

R∗ and their commutators [b,R], [b,R∗] on local generalized Morrey spaces LM
α,V,{x0}
p,φ and

vanishing generalized Morrey spaces VMα,V
p,φ related to Schrödinger type operator. We find the

sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of these operators from

one local generalized Morrey space LM
α,V,{x0}
p,φ to another LM

α,V,{x0}
p,φ2 and from one vanishing

generalized Morrey space VMα,V
p,φ to another VMα,V

p,φ2
.

Keywords: Schrödinger type operator, higher order Riesz transform, commutator, BMO, local
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1. Introduction and results

Let us consider the Schrödinger operator

L2 = (−△)2 + V 2(x) on Rn, n ≥ 5,

where V is non-negative, V ̸= 0, and belongs to a reverse Hölder class RHq for some q ≥ n/2.
i.e., there exists a constant C such that( 1

|B|

∫
B

V (y)qdy
)1/q

≤ C

|B|

∫
B

V (y)dy

for every ball B ⊂ Rn.
Obviously, RHq2 ⊂ RHq1 , if q2 > q1. But it is important that the class RHq has a property

of self improvement, that is, if V ∈ RHq, then V ∈ RHq+ϵ for some ϵ > 0. We define the reverse
Hölder index of V as q0 = sup{q : V ∈ RHq}.

As in [26], for a given potential V ∈ RHq with q > n/2, we define the auxiliary function

ρ(x) = sup
{
r > 0 :

1

rd−2

∫
B(x,r)

V (y)dy ≤ 1
}
, x ∈ Rn.

It is well known that 0 < ρ(x) < ∞ for any x ∈ Rn.
Obviously, 0 < mV (x) < ∞ if V ̸= 0. In particular, mV (x) = 1 with V = 1 and mV (x) ∼

1 + |x| with V (x) = |x|2.
Note that if P (x) is a polynomial and β > 0, it is easy to see that V (x) = |P (x)|β belongs to

RHq1 for q1 ≥ n/2 and there exists a constant C such that V (x) ≤ CmV (x)
2 (see [16, 19]).
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According to [4], the new BMO space BMOθ(ρ) with θ ≥ 0 is defined as a set of all locally
integrable functions b such that

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB|dy ≤ C
(
1 +

r

ρ(x)

)θ

for all x ∈ Rn and r > 0, where bB = 1
|B|

∫
B

b(y)dy. A norm for b ∈ BMOθ(ρ), denoted by [b]θ,

is given by the infimum of the constants in the inequalities above. Clearly, BMO ⊂ BMOθ(ρ).
The classical Morrey spaces were originally introduced by Morrey in [20] to study the local

behavior of solutions to second order elliptic partial differential equations. For the properties
and applications of classical Morrey spaces, we refer the readers to [6, 7, 10, 14, 15, 20, 23, 25].
The classical version of Morrey spaces is equipped with the norm

∥f∥Lp,λ
:= sup

x∈Rn, r>0
r
−λ

p ∥f∥Lp(B(x,r)), (1)

where 0 ≤ λ < n and 1 ≤ p < ∞. The generalized Morrey spaces are defined with rλ replaced by
a general non-negative function φ(x, r) satisfying some assumptions (see, for example, [10, 18, 21]
and etc).

The vanishing Morrey space V Lp,λ in its classical version was introduced in [28], where appli-
cations to PDE were considered. We also refer to [5] and [22] for some properties of such spaces.
This is a subspace of functions in Lp,λ(Rn), which satisfy the condition

lim
r→0

sup
x∈Rn, 0<t<r

t
−λ

p ∥f∥Lp(B(x,t)) = 0.

We now present the definition of generalized Morrey spaces (including weak version) related
to Schrödinger operator, which introduced by V. Guliyev in [12].

Definition 1.1. Let φ(x, r) be a positive measurable function on Rn × (0,∞), 1 ≤ p < ∞,

α ≥ 0, and V ∈ RHq, q ≥ 1. We denote by Mα,V
p,φ = Mα,V

p,φ (Rn) the generalized Morrey space

related to Schrödinger operator, the space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

∥f∥
Mα,V

p,φ
= sup

x∈Rn,r>0

(
1 +

r

ρ(x)

)α
φ(x, r)−1r−n/p∥f∥Lp(B(x,r)).

Also WMα,V
p,φ = WMα,V

p,φ (Rn) we denote the weak generalized Morrey space related to Schrödinger
operator,the space of all functions f ∈ WLloc

p (Rn) with

∥f∥
WMα,V

p,φ
= sup

x∈Rn,r>0

(
1 +

r

ρ(x)

)α
φ(x, r)−1r−n/p∥f∥WLp(B(x,r)) < ∞.

Remark 1.1. (i) When α = 0, and φ(x, r) = r(λ−n)/p, Mα,V
p,φ (Rn) is the classical Morrey

space Lp,λ(Rn) introduced by Morrey in [20];

(ii) When φ(x, r) = r(λ−n)/p, Mα,V
p,φ (Rn) is the Morrey space related to Schrödinger operator

Lα,V
p,λ (Rn) studied by Tang and Dong in [27];

(iii) When α = 0, Mα,V
p,φ (Rn) is the generalized Morrey space Mp,φ(Rn) introduced by

Mizuhara and Nakai in [18, 21];

(iv) The generalized Morrey space related to Schrödinger operator Mα,V
p,φ (Rn) was introduced

by Guliyev in [12].
For brevity, in the sequel we use the notations

Aα,V
p,φ (f ;x, r) :=

(
1 +

r

ρ(x)

)α
r−n/p φ(x, r)−1∥f∥Lp(B(x,r))

and

AW,α,V
Φ,φ (f ;x, r) :=

(
1 +

r

ρ(x)

)α
r−n/p φ(x, r)−1∥f∥WLp(B(x,r)).
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Definition 1.2. The vanishing generalized Morrey space related to Schrödinger operator

VMα,V
p,φ (Rn) is defined as the spaces of functions f ∈ Mα,V

p,φ (Rn) such that

lim
r→0

sup
x∈Rn

Aα,V
p,φ (f ;x, r) = 0. (2)

The vanishing weak generalized Morrey space related to Schrödinger operator VWMα,V
p,φ (Rn)

is defined as the spaces of functions f ∈ WMα,V
p,φ (Rn) such that

lim
r→0

sup
x∈Rn

AW,α,V
p,φ (f ;x, r) = 0.

The vanishing spaces VMα,V
p,φ (Rn) and VWMα,V

p,φ (Rn) are Banach spaces with respect to the
norm

∥f∥
VMα,V

p,φ
≡ ∥f∥

Mα,V
p,φ

= sup
x∈Rn,r>0

Aα,V
p,φ (f ;x, r),

∥f∥
VWMα,V

p,φ
≡ ∥f∥

WMα,V
p,φ

= sup
x∈Rn,r>0

AW,α,V
p,φ (f ;x, r),

respectively.

Remark 1.2. (i) When α = 0, and φ(x, r) = r(λ−n)/p, VMα,V
p,φ (Rn) is the vanishing Morrey

space V Lp,λ(Rn) introduced by Vitanza in [28];

(ii) When α = 0, VMα,V
p,φ (Rn) is the vanishing generalized Morrey space VMp,φ(Rn) studied

in [1, 24].

(iii) The vanishing generalized Morrey space related to Schrödinger operator VMα,V
p,φ (Rn)

were studied in [2].
Definition 1.3. Let φ(x, r) be a positive measurable function on Rn × (0,∞), 1 ≤ p < ∞,

α ≥ 0, and V ∈ RHq, q ≥ 1. For any fixed x0 ∈ Rn we denote by LM
α,V,{x0}
p,φ = LM

α,V,{x0}
p,φ (Rn)

the local generalized Morrey space related to Schrödinger operator, the space of all functions
f ∈ Lloc

p (Rn) with finite norm

∥f∥
LM

α,V,{x0}
p,φ

= sup
r>0

Aα,V
p,φ (f ;x0, r).

Also WLM
α,V,{x0}
p,φ = WLM

α,V,{x0}
p,φ (Rn) we denote the weak local generalized Morrey space re-

lated to Schrödinger operator,the space of all functions f ∈ WLloc
p (Rn) with

∥f∥
WLM

α,V,{x0}
p,φ

= sup
r>0

AW,α,V
p,φ (f ;x0, r) < ∞.

The local spaces LM
α,V,{x0}
p,φ (Rn) and WLM

α,V,{x0}
p,φ (Rn) are Banach spaces with respect to

the norm

∥f∥
LM

α,V,{x0}
p,φ

= sup
r>0

Aα,V
p,φ (f ;x0, r),

∥f∥
WLM

α,V,{x0}
p,φ

= sup
r>0

AW,α,V
p,φ (f ;x0, r),

respectively.

Remark 1.3. (i) When α = 0, and φ(x, r) = r(λ−n)/p, LM
α,V,{x0}
p,φ (Rn) is the local (central)

Morrey space LM
{0}
p,λ (R

n) studied in [3];

(ii) When α = 0, LM
α,V,{x0}
p,φ (Rn) is the local generalized Morrey space VM

{x0}
p,φ (Rn) were

introduced by Guliyev in [8], see also [9, 11] etc.

It is natural, first of all, to find conditions ensuring that the spaces LM
α,V,{x0}
p,φ and Mα,V

p,φ are
nontrivial, that is consist not only of functions equivalent to 0 on Rn.
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Lemma 1.1. Let x0 ∈ Rn, φ(x, r) be a positive measurable function on Rn× (0,∞), 1 ≤ p <
∞, α ≥ 0, and V ∈ RHq, q ≥ 1. If

sup
t<r<∞

(
1 +

r

ρ(x0)

)α r
−n

p

φ(x0, r)
= ∞ for some t > 0, (3)

then LM
α,V,{x0}
p,φ (Rn) = Θ, where Θ is the set of all functions equivalent to 0 on Rn.

Proof. Let (4) be satisfied and f be not equivalent to zero. Then ∥f∥Lp(B(x0,t))
> 0, hence

∥f∥
LM

α,V,{x0}
p,φ

≥ sup
t<r<∞

(
1 +

r

ρ(x0)

)α
φ(x0, r)

−1r
−n

p ∥f∥Lp(B(x0,r))

≥ ∥f∥Lp(B(x0,t)) sup
t<r<∞

(
1 +

r

ρ(x0)

)α
φ(x0, r)

−1r
−n

p .

Therefore ∥f∥
LM

α,V,{x0}
p,φ

= ∞. �

Lemma 1.2. [2] Let φ(x, r) be a positive measurable function on Rn × (0,∞), 1 ≤ p < ∞,
α ≥ 0, and V ∈ RHq, q ≥ 1.

(i) If

sup
t<r<∞

(
1 +

r

ρ(x)

)α r
−n

p

φ(x, r)
= ∞ for some t > 0 and for all x ∈ Rn, (4)

then Mα,V
p,φ (Rn) = Θ.

(ii) If

sup
0<r<τ

(
1 +

r

ρ(x)

)α
φ(x, r)−1 = ∞ for some τ > 0 and for all x ∈ Rn, (5)

then Mα,V
p,φ (Rn) = Θ.

Remark 1.4. We denote by Ωα,V
p,loc the sets of all positive measurable functions φ on Rn ×

(0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥(1 + r

ρ(x)

)α r
−n

p

φ(x, r)

∥∥∥
L∞(t,∞)

< ∞.

Moreover, we denote by Ωα,V
p the sets of all positive measurable functions φ on Rn× (0,∞) such

that for all t > 0,

sup
x∈Rn

∥∥∥(1 + r

ρ(x)

)α r
−n

p

φ(x, r)

∥∥∥
L∞(t,∞)

< ∞, and sup
x∈Rn

∥∥∥(1 + r

ρ(x)

)α
φ(x, r)−1

∥∥∥
L∞(0,t)

< ∞.

Remark 1.5. We denote by Ωα,V
p,1 the sets of all positive measurable functions φ on Rn ×

(0,∞) such that

inf
x∈Rn

inf
r>δ

(
1 +

r

ρ(x)

)−α
φ(x, r) > 0, for some δ > 0, (6)

and

lim
r→0

(
1 +

r

ρ(x)

)α rn/p

φ(x, r)
= 0. (7)

For the non-triviality of the spaces LM
α,V,{x0}
p,φ (Rn), Mα,V

p,φ (Rn) and VMα,V
p,φ (Rn) we always

assume that φ ∈ Ωα,V
p,loc, φ ∈ Ωα,V

p and φ ∈ Ωα,V
p,1 , respectively.

The Riesz transform related to L = −△ + V is defined by R1 = ∇L−1/2, and its dual is
defined by R∗

1 = L−1/2∇. The Lp boundedness of R and R∗ have been obtained in [26] by Shen.
Let b ∈ BMOθ(ρ), Bongioanni, Harboure and Salinas in [4] showed that the commutators [b,R1]
and [b,R∗

1] are also bounded on Lp. In [13], was proved that the operators R∗
1 and [b,R∗

1] with
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b ∈ BMOθ(ρ) are bounded on Mα,V
p,φ (Rn) and VMα,V

p,φ (Rn). In [2] showed that the Marcinkiewicz

operators µL
j and their commutators [b, µL

j ] with b ∈ BMOθ(ρ) are bounded on Mα,V
p,φ (Rn) and

VMα,V
p,φ (Rn).

The higher order Riesz transform related to L2 is defined by R = ∇2L−1/2
2 , and its dual is

defined by R∗ = L−1/2
2 ∇2. The Lp boundedness of R and R∗ have been obtained in [16] by Liu

and Dong. Let b ∈ BMOθ(ρ), Liu et al. in [17] showed that the commutators [b,R] and [b,R∗]
are also bounded on Lp.

In this paper, we consider the boundedness of the operators R and R∗ on local generalized

Morrey space LM
α,V,{x0}
p,φ (Rn), generalized Morrey space Mα,V

p,φ (Rn) and vanishing generalized

Morrey space VMα,V
p,φ (Rn) related to Schrödinger type operator. When b belongs to the new

BMO function spaces BMOθ(ρ), we also show that the commutator operators [b,R] and [b,R∗]

are bounded on LM
α,V,{x0}
p,φ (Rn), Mα,V

p,φ (Rn) and VMα,V
p,φ (Rn).

Our main results are as follows.
Theorem 1.1. Let x0 ∈ Rn, V ∈ RHq with n/2 ≤ q < n, α ≥ 0, 1/p0 = 2/q0 − 2/n, q0 is

the reverse Hölder index of V , and φ1, φ2 ∈ Ωα,V
p,loc satisfies the condition

∞∫
r

ess inf
t<s<∞

φ1(x0, s)s
n
p

t
n
p

dt

t
≤ c0φ2(x0, r), (8)

where c0 does not depend on r.

(i) If p = 1, then the operator R is bounded from LM
α,V,{x0}
1,φ1

to WLM
α,V,{x0}
1,φ2

. Moreover,
there exists a constant C such that

∥R(f)∥
WLM

α,V,{x0}
1,φ2

≤ C∥f∥
LM

α,V,{x0}
1,φ1

.

(ii) If 1 < p < p0, then the operator R is bounded from LM
α,V,{x0}
p,φ1 to LM

α,V,{x0}
p,φ2 . Moreover,

there exists a constant C such that

∥R(f)∥
LM

α,V,{x0}
p,φ2

≤ C∥f∥
LM

α,V,{x0}
p,φ1

.

(iii) If p′0 < p < ∞, then the operator R∗ is bounded from LM
α,V,{x0}
p,φ1 to LM

α,V,{x0}
p,φ2 , where

p′0 =
p0

p0−1 . Moreover, there exists a constant C such that

∥R∗(f)∥
LMα,V

p,φ2
≤ C∥f∥

LMα,V
p,φ1

.

Corollary 1.1. Let V ∈ RHq with n/2 ≤ q < n, α ≥ 0, 1/p0 = 2/q0 − 2/n, q0 is the reverse

Hölder index of V , and φ1, φ2 ∈ Ωα,V
p satisfies the condition

∞∫
r

ess inf
t<s<∞

φ1(x, s)s
n
p

t
n
p

dt

t
≤ c0φ2(x, r), (9)

where c0 does not depend on x and r.

(i) If p = 1, then the operator R is bounded from Mα,V
1,φ1

to WMα,V
1,φ2

.

(ii) If 1 < p < p0, then the operator R is bounded from Mα,V
p,φ1 to Mα,V

p,φ2 .

(iii) If p′0 < p < ∞, then the operator R∗ is bounded from Mα,V
p,φ1 to Mα,V

p,φ2 , where p′0 =
p0

p0−1 .

Theorem 1.2. Let x0 ∈ Rn, V ∈ RHq with n/2 ≤ q < n, α ≥ 0, 1/p0 = 2/q0 − 2/n,

b ∈ BMOθ(ρ), q0 is the reverse Hölder index of V , and φ1, φ2 ∈ Ωα,V
p,loc satisfies the condition

∞∫
r

(
1 + ln

t

r

)ess inf
t<s<∞

φ1(x0, s)s
n
p

t
n
p

dt

t
≤ c0φ2(x0, r), (10)
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where c0 does not depend on x and r.

(i) If 1 < p < p0, then the commutator operator [b,R] is bounded from LM
α,V,{x0}
p,φ1 to

LM
α,V,{x0}
p,φ2 . Moreover, there exists a constant C such that

∥[b,R](f)∥
LM

α,V,{x0}
p,φ2

≤ C∥f∥
LM

α,V,{x0}
p,φ1

.

(ii) If p′0 < p < ∞, then the commutator operator [b,R∗] is bounded from LM
α,V,{x0}
p,φ1 to

LM
α,V,{x0}
p,φ2 and

∥[b,R∗](f)∥
LM

α,V,{x0}
p,φ2

≤ C[b]θ∥f∥LMα,V,{x0}
p,φ1

,

where C does not depend on f .
Corollary 1.2. Let V ∈ RHq with n/2 ≤ q < n, α ≥ 0, 1/p0 = 2/q0 − 2/n, b ∈ BMOθ(ρ),

q0 is the reverse Hölder index of V , and φ1, φ2 ∈ Ωα,V
p satisfies the condition

∞∫
r

(
1 + ln

t

r

)ess inf
t<s<∞

φ1(x, s)s
n
p

t
n
p

dt

t
≤ c0φ2(x, r), (11)

where c0 does not depend on x and r.

(i) If 1 < p < p0, then the operator [b,R] is bounded from Mα,V
p,φ1 to Mα,V

p,φ2 .

(ii) If p′0 < p < ∞, then the operator [b,R∗] is bounded from Mα,V
p,φ1 to Mα,V

p,φ2 .
Theorem 1.3. Let V ∈ RHq with n/2 ≤ q < n, α ≥ 0, 1/p0 = 2/q0 − 2/n, q0 is the reverse

Hölder index of V , and φ1, φ2 ∈ Ωα,V
p,1 satisfies the conditions

cδ :=

∞∫
δ

sup
x∈Rn

φ1(x, t)
dt

t
< ∞ (12)

for every δ > 0, and
∞∫
r

φ1(x, t)
dt

t
≤ C0φ2(x, r), (13)

where C0 does not depend on x ∈ Rn and r > 0.

(i) If 1 < p < p0, then the operator R is bounded from VMα,V
p,φ1 to VMα,V

p,φ2.

(ii) If p′0 < p < ∞, then the operator R∗ is bounded from VMα,V
p,φ1 to VMα,V

p,φ2.
Theorem 1.4. Let V ∈ RHq with n/2 ≤ q < n, α ≥ 0, 1/p0 = 2/q0− 2/n, b ∈ BMOθ(ρ), q0

is the reverse Hölder index of V , and φ1, φ2 ∈ Ωα,V
p,1 satisfies the conditions

∞∫
r

(
1 + ln

t

r

)
φ1(x, t)

dt

t
≤ c0φ2(x, r), (14)

where c0 does not depend on x and r,

lim
r→0

ln 1
r

inf
x∈Rn

φ2(x, r)
= 0 (15)

and

cδ :=

∞∫
δ

(
1 + | ln t|

)
sup
x∈Rn

φ1(x, t)
dt

t
< ∞ (16)

for every δ > 0.

(i) If 1 < p < p0, then the operator [b,R] is bounded from VMα,V
p,φ1 to VMα,V

p,φ2.
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(ii) If p′0 < p < ∞, then the operator [b,R∗] is bounded from VMα,V
p,φ1 to VMα,V

p,φ2.
In this paper, we shall use the symbol A . B to indicate that there exists a universal positive

constant C, independent of all important parameters, such that A ≤ CB. A ≈ B means that
A . B and B . A.

2. Some preliminaries

We would like to recall the important properties concerning the critical function.
Lemma 2.1. There exists constants C > 0 and l0 > 0 such that

1

rn−2

∫
B(x,r)

V (y)dy ≤ C
(
1 +

r

ρ(x)

)l0
.

Lemma 2.2. [26] Let V ∈ RHn/2. For the associated function ρ there exist C and k0 ≥ 1
such that

C−1ρ(x)
(
1 +

|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ Cρ(x)

(
1 +

|x− y|
ρ(x)

) k0
1+k0 (17)

for all x, y ∈ Rn.
Lemma 2.3. [2] Suppose x ∈ B(x0, r). Then for k ∈ N we have

1(
1 + 2kr

ρ(x)

)N
. 1(

1 + 2kr
ρ(x0)

)N/(k0+1)
.

We give some inequalities about the new BMO space BMOθ(ρ).
Lemma 2.4. [4] Let 1 ≤ s < ∞. If b ∈ BMOθ(ρ), then( 1

|B|

∫
B

|b(y)− bB|sdy
)1/s

≤ [b]θ

(
1 +

r

ρ(x)

)θ′

for all B = B(x, r), with x ∈ Rn and r > 0, where θ′ = (k0+1)θ and k0 is the constant appearing
in (17).

Lemma 2.5. [4] Let 1 ≤ s < ∞, b ∈ BMOθ(ρ), and B = B(x, r). Then( 1

|2kB|

∫
2kB

|b(y)− bB|sdy
)1/s

≤ [b]θk
(
1 +

2kr

ρ(x)

)θ′

for all k ∈ N, with θ′ as in Lemma 2.4.
Let K∗ be the kernel of R∗, then we have
Lemma 2.6. [4] Let V ∈ RHq, we have the following results
(i) If n/2 ≤ q < n, then for every N , there exists a constant CN > 0 such that

|K∗(x, z)| ≤
CN

(
1 + |x−z|

ρ(x)

)−N

|x− z|n−2

 ∫
B(z,|x−z|/4)

V 2(u)

|u− z|n−2
du+

1

|x− z|2

 . (18)

(ii) When q ≥ n, the term involving V can be dropped from above formula.
The following results the estimates the Lp boundedness of the operators R and R∗.
Lemma 2.7. [16] Let V ∈ RHq with n/2 ≤ q < n, 1/p0 = 2/q0 − 2/n.
(i) If 1 < p < p0, then the operator R is bounded on Lp(Rn). Moreover, there exists a constant

C such that

∥R(f)∥Lp(Rn) ≤ C∥f∥Lp(Rn),
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(ii) If p = 1, then the operator R is bounded from L1(Rn) to WL1(Rn). Moreover, there
exists a constant C such that

∥R(f)∥WL1(Rn) ≤ C∥f∥L1(Rn).

(iii) If p′0 < p < ∞, then the operator R∗ is bounded on Lp(Rn). Moreover, there exists a
constant C such that

∥R∗(f)∥Lp(Rn) ≤ C∥f∥Lp(Rn).

The following results the estimates the Lp boundedness of the commutator operators [b,R]
and [b,R∗].

Lemma 2.8. [17] Let V ∈ RHq with n/2 ≤ q < n, 1/p0 = 2/q0 − 2/n and b ∈ BMOθ(ρ).
(i) If 1 < p < p0, then the commutator operator [b,R] is bounded on Lp(Rn). Moreover, there

exists a constant C such that

∥[b,R](f)∥Lp(Rn) ≤ C∥f∥Lp(Rn),

(ii) If p′0 < p < ∞, then the commutator operator [b,R∗] is bounded on Lp(Rn). Moreover,
there exists a constant C such that

∥[b,R∗](f)∥Lp(Rn) ≤ C∥f∥Lp(Rn).

We recall a relationship between essential supremum and essential infimum.
Lemma 2.9. [29] Let f be a real-valued nonnegative function and measurable on E. Then(

ess inf
x∈E

f(x)
)−1

= ess sup
x∈E

1

f(x)
.

3. Proof of Theorem 1.1.

To prove Theorem 1.1., we first investigate the following local estimate.
Theorem 3.1. Let V ∈ RHq with n/2 ≤ q < n and 1/p0 = 2/q0 − 2/n.
(i) If p = 1, then the inequality

∥R(f)∥WL1(B(x0,r)) . rn
∞∫

2r

∥f∥L1(B(x0,t))

tn
dt

t
(19)

holds for any f ∈ Lloc(Rn) and for any x0 ∈ Rn, r > 0.
(ii) If 1 < p < p0, then the inequality

∥R(f)∥Lp(B(x0,r)) . r
n
p

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
(20)

holds for any f ∈ Lloc
p (Rn) and for any x0 ∈ Rn, r > 0.

(iii) If p′0 < p < ∞, then the inequality

∥R∗(f)∥Lp(B(x0,r)) . r
n
p

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
(21)

holds for any f ∈ Lloc
p (Rn) and for any x0 ∈ Rn, r > 0.

Proof. Since the proofs for the case 1 < p < p0 and the case p′0 < p < ∞ are very similar, we
only prove the case p′0 < p < ∞.
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For arbitrary x0 ∈ Rn, set B = B(x0, r) and λB = B(x0, λr) for any λ > 0. We write f as
f = f1 + f2, where f1(y) = f(y)χ

B(x0,2r)
(y), and χ

B(x0,2r)
denotes the characteristic function of

B(x0, 2r). Then

∥R∗(f)∥Lp(B(x0,r)) ≤ ∥R∗(f1)∥Lp(B(x0,r)) + ∥R∗(f2)∥Lp(B(x0,r)).

Since f1 ∈ Lp(Rn) and from the boundedness of R∗ on Lp(Rn), p′0 < p < ∞ it follows that

∥R∗(f1)∥Lp(B(x0,r)) . ∥f∥Lp(B(x0,2r)) . r
n
p ∥f∥Lp(B(x0,2r))

∞∫
2r

dt

t
n
p
+1

. r
n
p

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
. (22)

To estimate ∥R∗(f2)∥Lp(B(x0,2r)) obverse that x ∈ B, y ∈ (2B)c implies 1
2 |x0 − y| ≤ |x− y| ≤

3
2 |x0 − y|. Then by Lemma 2.7. for all x ∈ B(x0, r) we have

|R∗(f2)(x)| ≤
∫

(2B)c

|K∗(x, y)f(y)|dy .
∫

(2B)c

1(
1 + |x−y|

ρ(x)

)N |f(y)|
|x− y|n

dy

+

∫
(2B)c

1(
1 + |x−y|

ρ(x)

)N |f(y)|
|x− y|n−1

dy

∫
B(y,|x−y|/4)

V (z)

|z − y|n−1
dzdy

.
∫

(2B)c

1(
1 + |x0−y|

ρ(x)

)N |f(y)|
|x0 − y|n

dy

+

∫
(2B)c

1(
1 + |x0−y|

ρ(x)

)N |f(y)|
|x0 − y|n−1

dy

∫
B(y,|x0−y|/4)

V (z)

|z − y|n−1
dzdy

= I1 + I2.

By Hölder’s inequality and Lemma 2.3. we get

I1 .
1(

1 + 2r
ρ(x)

)N ∫
(2B)c

|f(y)|
|x0 − y|n

dy . 1(
1 + 2r

ρ(x)

)N ∞∑
k=1

(2k+1r)−n

∫
2k+1B

|f(y)|dy

. 1(
1 + 2r

ρ(x0)

)N/(k0+1)

∞∑
k=1

2k+1r∫
2kr

∥f∥Lp(B(x0,t))

t
n
p

dt

t

. 1(
1 + 2r

ρ(x0)

)N/(k0+1)

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
. (23)

For I2, by Lemmas 2.1, 2.3. and Hölder’s inequality we get

I2 .
∞∑
k=1

1

(2k+1r)n−1

1(
1 + 2kr

ρ(x)

)N ∫
2k+1B

|f(y)|dy
∫

B(x0,2k+1r)

V (z)

|z − y|n−2
dz

.
∞∑
k=1

1

(2k+1r)n−1

1(
1 + 2kr

ρ(x0)

)N/(k0+1)

∫
2k+1B

|f(y)|I2(Vχ
B(x0,2

k+1r)
)(y)dy

.
∞∑
k=1

1

(2k+1r)n−1

1(
1 + 2kr

ρ(x0)

)N/(k0+1)
∥f∥Lp(B(x0,2k+1r))∥I2(Vχ

B(x0,2
k+1r)

)∥Lp′ (Rn).
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Since p′0 < p < ∞, 1/p0 = 2/s − 2/n, we can select an appropriate number s such that
1/p′ = 2/s − 2/n. Note that I2 is bounded from Ls/2(Rn) to Lp′(Rn), and V ∈ RHs, then by
Lemma 2.1. we have

∥I2(Vχ
B(x0,2

k+1r)
)∥Lp′ (Rn) . ∥V 2

χ
B(x0,2

k+1r)
∥Ls/2(Rn)

= |B(x0, 2
k+1r)|

2
s

 1

|B(x0, 2k+1r)|

∫
B(x0,2k+1)

V s(z)dz


2/s

. |B(x0, 2
k+1r)|

2
s
− 4

n

 1

(2k+1r)n−2

∫
B(x0,2k+1)

V (z)dz


2

. (2k+1r)
n
p′−1

(
1 +

2kr

ρ(x0)

)2l0
.

Thus we get

I2 .
∞∑
k=1

(2k+1r)
−n

p
1(

1 + 2kr
ρ(x0)

)(N/(k0+1)−l0)
∥f∥Lp(B(x0,2k+1r))

. 1(
1 + 2r

ρ(x0)

)(N/(k0+1)−2l0)

∞∑
k=1

(2k+1r)
−n

p ∥f∥Lp(B(x0,2k+1r))

. 1(
1 + 2r

ρ(x0)

)(N/(k0+1)−2l0)

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
.

So that 1/p′ = 2/s− 2/n and s < n.
Combining the estimates for I1 and I2 we obtain

sup
x∈B(x0,r)

|R∗(f2)(x)| .
1(

1 + 2r
ρ(x0)

)(N/(k0+1)−2l0)

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
. (24)

Taking N ≥ 2l0(k0 + 1), then

∥R∗(f2)∥Lp(B(x0,r)) . r
n
p

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t

holds for p0 < p < ∞.
Let p = 1. From the weak (1,1) boundedness of T and (4.6) it follows that:
This completes the proof of Theorem 3.1. �

Proof of Theorem 1.1. from Lemma 2.9., we have

1

ess inf
t<s<∞

φ1(x0, s)s
n
p

= ess sup
t<s<∞

1

φ1(x0, s)s
n
p

.
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Note the fact that ∥f∥Lp(B(x0,t)) is a nondecresing function of t, and f ∈ Mα,V
p,φ1 , then(

1 + t
ρ(x0)

)α
∥f∥Lp(B(x0,t))

ess inf
t<s<∞

φ1(x0, s)s
n
p

. ess sup
t<s<∞

(
1 + t

ρ(x0)

)α
∥f∥Lp(B(x0,t))

φ1(x0, s)s
n
p

. sup
0<s<∞

(
1 + s

ρ(x0)

)α
∥f∥Lp(B(x0,s))

φ1(x0, s)s
n
p

. ∥f∥
LM

α,V,{x0}
p,φ1

. (25)

Since α ≥ 0, and (φ1, φ2) satisfies the condition (9), then

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
=

∞∫
2r

(
1 + t

ρ(x0)

)α
∥f∥Lp(B(x0,t))

ess inf
t<s<∞

φ1(x0, s)s
n
p

ess inf
t<s<∞

φ1(x0, s)s
n
p(

1 + t
ρ(x0)

)α
t
n
p

dt

t

. ∥f∥
LM

α,V,{x0}
p,φ1

∞∫
r

ess inf
t<s<∞

φ1(x0, s)s
n
p(

1 + t
ρ(x0)

)α
t
n
p

dt

t

. ∥f∥
LM

α,V,{x0}
p,φ1

(
1 +

r

ρ(x0)

)−α
∞∫
r

ess inf
t<s<∞

φ1(x0, s)s
n
p

t
n
p

dt

t

. ∥f∥
LM

α,V,{x0}
p,φ1

(
1 +

r

ρ(x0)

)−α
φ2(x0, r). (26)

Then by Theorem 3.1. we get

∥R∗(f)∥
LM

α,V,{x0}
p,φ2

. sup
r>0

(
1 +

r

ρ(x0)

)α
φ2(x0, r)

−1r−n/p∥R∗(f)∥Lp(B(x0,r))

. sup
r>0

(
1 +

r

ρ(x0)

)α
φ2(x0, r)

−1

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
. ∥f∥

LM
α,V,{x0}
p,φ1

.

4. Proof of Theorem 1.2.

As the proof of Theorem 1.1., it suffices to prove the following result.
Theorem 4.1. Let V ∈ RHq with n/2 ≤ q < n, α ≥ 0, 1/p0 = 2/q0−2/n and b ∈ BMOθ(ρ).
(i) If 1 < p < p0, then the inequality

∥[b,R(f)]∥Lp(B(x0,r)) . [b]θ r
n
p

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
(27)

holds for any f ∈ Lloc
p (Rn) and for any x0 ∈ Rn, r > 0.

(iii) If p′0 < p < ∞, then the inequality

∥[b,R∗(f)]∥Lp(B(x0,r)) . [b]θ r
n
p

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
(28)

holds for any f ∈ Lloc
p (Rn) and for any x0 ∈ Rn, r > 0.

Proof. Since the proofs for the case 1 < p < p0 and the case p′0 < p < ∞ are very similar, we
only prove the case p′0 < p < ∞.

We write f as f = f1 + f2, where f1(y) = f(y)χ
B(x0,2r)

(y). Then

∥[b,R∗](f)∥Lp(B(x0,r)) ≤ ∥[b,R∗](f1)∥Lp(B(x0,r)) + ∥[b,R∗](f2)∥Lp(B(x0,r)).
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By the boundedness of [b,R∗] on Lp(Rn), p′0 < p < ∞ and similar to the estimate of (22) we get

∥[b,R∗](f1)∥Lp(B(x0,r)) . [b]θ∥f∥Lp(B(x0,2r))

. [b]θr
n
p

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
. (29)

We now turn to deal with the term ∥[b,R∗](f2)∥Lp(B(x0,r)). For any given x ∈ B(x0, r) we have

|[b,R∗](f2)(x)| ≤ |b(x)− b2B| |R∗(f2)(x)|+ |R∗((b− b2B)f2)(x)|.

By (24) we have

sup
x∈B(x0,r)

|R∗(f2)(x)| .
1(

1 + 2r
ρ(x0)

)(N/(k0+1)−l0)

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
.

By Lemma 2.4.,

∥b− b2B∥Lp(B(x0,r)) . [b]θ

(
1 +

2r

ρ(x0)

)θ
.

Then by Lemma 2.3., and taking N ≥ (k0 + 1)θ we get

∥|b(x)− b2B|R∗(f2)∥Lp(B(x0,r)) . [b]θr
n
p

(
1 +

2r

ρ(x0)

)θ−N/(k0+1)+l0
∞∫

2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t

. [b]θr
n
p

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
. (30)

Finally, let us estimate ∥R∗((b− b2B)f2)∥Lp(B(x0,r)). By (18), Lemma 2.2. and 2.3. we have

sup
x∈B(x0,r)

|R∗((b− b2B)f2)(x)| ≤
∫

(2B)c

|K∗(x, y)(b(y)− b2B)f(y)|dy

.
∫

(2B)c

|b(y)− b2B|(
1 + |x0−y|

ρ(x)

)N

f(y)

|x0 − y|n
dy +

∫
(2B)c

|b(y)− b2B|(
1 + |x0−y|

ρ(x)

)N

f(y)

|x0 − y|n−2

×
∫

B(y,|x0−y|/4)

V 2(z)

|z − y|n−2
dzdy = J1 + J2.

Note that ∫
2k+1B

|b(y)− b2B||f(y)|dy .
∫

2k+1B

|b(y)− b2k+1B||f(y)|dy + |b2k+1B − b2B|

×
∫

2k+1B

|f(y)|dy . [b]θk
(
1 +

2kr

ρ(x0)

)θ′

(2kr)
n
p′ ∥f∥Lp(B(x0,2k+1r)).
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Then, by Lemma 2.3. we get

J1 . [b]θ

∞∑
k=1

k(
1 + 2kr

ρ(x0)

)N/(k0+1)−θ′
(2kr)

−n
p ∥f∥Lp(B(x0,2k+1r))

. [b]θ

∞∑
k=1

k(2kr)
−n

p ∥f∥Lp(B(x0,2k+1r)) . [b]θ

∞∑
k=1

k

2k+1r∫
2kr

∥f∥Lp(B(x0,t))

t
n
p

dt

t
.

Since 2kr ≤ t ≤ 2k+1r, then k ≈ ln t
r . Thus

J1 . [b]θ

∞∑
k=1

2k+1r∫
2kr

ln
t

r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
. [b]θ

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
.

Choosing p̃ and s̃ such that p > p̃, and 1/p̃′ = 2/s̃− 2/n, then

J2 .
∞∑
k=1

1

(2k+1r)n−1

1(
1 + 2kr

ρ(x0)

)N/(k0+1)

×
∫

2k+1B

|b(y)− b2B||f(y)|I2(V 2
χ
B(x0,2

k+1)
)(y)dy

.
∞∑
k=1

1

(2k+1r)n−1

1(
1 + 2kr

ρ(x0)

)N/(k0+1)
× ∥(b− b2B)f∥Lp̃(B(x0,2k+1r))∥I2(V 2

χ
B(x0,2

k+1)
)∥Lp̃′ (Rn).

Since I2 is bounded from Ls̃/2(Rn) to Lp̃′(Rn), and V ∈ RHs̃ we have

∥I2(V 2
χ
B(x0,2

k+1)
)∥Lp̃′ (Rn) . (2k+1r)

d
p̃′−1

(
1 +

2k+1r

ρ(x0)

)2l0
.

Let v = pp̃
p−p̃ , then

∥(b− b2B)f∥Lp̃(B(x0,2k+1r)) . ∥f∥Lp(B(x0,2k+1r))∥(b− b2B)f∥Lυ(B(x0,2k+1r)).

But

∥(b− b2B)∥Lυ(B(x0,2k+1r)) . [b]θk|2k+1B|
1
p̃
− 1

p

(
1 +

2kr

ρ(x0)

)θ′

.

Then

J2 .
∞∑
k=1

[b]θk(
1 + 2kr

ρ(x0)

)N/(k0−1)−l0−θ′
(2k+1r)

−n
p ∥f∥Lp(B(x0,2k+1r))

. [b]θ

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
.

Thus,

∥R∗((b− b2B)f2)∥L2(B(x0,r)) . [b]θr
n
p

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
. (31)

Combining (29), (30) and (31), the proof of Theorem 4.1. is completed.
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Proof of Theorem 1.2. Since f ∈ LM
α,V,{x0}
p,φ1 and (φ1, φ2) satisfies the condition (10), by (26)

we have

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t

=

∞∫
2r

(
1 + t

ρ(x0)

)α
∥f∥Lp(B(x0,t))

ess inf
t<s<∞

φ1(x0, s)s
n
p

(
1 + ln

t

r

)ess inf
t<s<∞

φ1(x0, s)s
n
p(

1 + t
ρ(x0)

)α
t
n
p

dt

t

. ∥f∥
LM

α,V,{x0}
p,φ1

∞∫
2r

(
1 + ln

t

r

)ess inf
t<s<∞

φ1(x0, s)s
n
p(

1 + t
ρ(x0)

)α
t
n
p

dt

t

. ∥f∥
LM

α,V,{x0}
p,φ1

(
1 +

r

ρ(x0)

)−α
∞∫
r

(
1 + ln

t

r

)ess inf
t<s<∞

φ1(x0, s)s
n
p

t
n
p

dt

t

. ∥f∥
LM

α,V,{x0}
p,φ1

(
1 +

r

ρ(x0)

)−α
φ2(x0, r). (32)

Then from Theorem 4.1. we get

∥[b,R∗](f)∥
LM

α,V,{x0}
p,φ2

. sup
x0∈Rn,r>0

(
1 +

r

ρ(x)

)α
φ2(x0, r)

−1r−n/p∥[b,R∗](f)∥Lp(B(x0,r))

. [b]θ sup
x0∈Rn,r>0

(
1 +

r

ρ(x0)

)α
φ2(x0, r)

−1

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t

. [b]θ∥f∥LMα,V,{x0}
p,φ1

.

�

5. Proof of Theorem 1.3.

The statement is derived from the estimate (21). The estimation of the norm of the operator,
that is, the boundedness in the non-vanishing space, immediately follows from by Theorem 1.1.
So we only have to prove that

lim
r→0

sup
x∈Rn

Aα,V
p,φ1

(f ;x, r) = 0, p′0 < p < ∞ ⇒ lim
r→0

sup
x∈Rn

Aα,V
p,φ2

(R∗(f);x, r) = 0 (33)

and

lim
r→0

sup
x∈Rn

Aα,V
p,φ1

(f ;x, r) = 0, 1 < p < p0 ⇒ lim
r→0

sup
x∈Rn

Aα,V
p,φ2

(R(f);x, r) = 0. (34)

To show that sup
x∈Rn

(
1 + r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥R∗(f)∥Lp(B(x,r)) < ε for small r, we split the

right-hand side of (21):(
1 +

r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥R∗(f)∥Lp(B(x,r)) ≤ C[Iδ0(x, r) + Jδ0(x, r)], (35)
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where δ0 > 0 (we may take δ0 > 1), and

Iδ0(x, r) :=

(
1 + r

ρ(x)

)α

φ2(x, r)

δ0∫
r

t
−n

p
−1∥f∥Lp(B(x,t))dt

and

Jδ0(x, r) :=

(
1 + r

ρ(x)

)α

φ2(x, r)

∞∫
δ0

t
−n

p
−1∥f∥Lp(B(x,t))dt

and it is supposed that r < δ0. We use the fact that f ∈ VMα,V
p,φ1(Rn) and choose any fixed

δ0 > 0 such that

sup
x∈Rn

(
1 +

r

ρ(x)

)α
φ1(x, r)

−1r−n/p∥f∥Lp(B(x,r)) <
ε

2CC0
,

where C and C0 are constants from (13) and (35). This allows to estimate the first term
uniformly in r ∈ (0, δ0) :

sup
x∈Rn

CIδ0(x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term now my be made already by the choice of r sufficiently small.
Indeed, thanks to the condition (6) we have

Jδ0(x, r) ≤ cσ0

(
1 + r

ρ(x)

)α

φ1(x, r)
∥f∥

VMα,V
p,φ1

,

where cσ0 is the constant from (2). Then, by (6) it suffices to choose r small enough such that

sup
x∈Rn

(
1 + r

ρ(x)

)α

φ2(x, r)
≤ ε

2cσ0∥f∥VMα,V
p,φ1

,

which completes the proof of (33).
The proof of (34) is similar to the proof of (33).

6. Proof of Theorem 1.4.

The norm inequality having already been provided by Theorem Corollary 1.2., we only have
to prove the implication

lim
r→0

sup
x∈Rn

(
1 +

r

ρ(x)

)α
φ1(x, r)

−1r−n/p∥f∥Lp(B(x,r)) = 0

=⇒ lim
r→0

sup
x∈Rn

(
1 +

r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥[b,R∗(f)]∥Lp(B(x,r)) = 0. (36)

To check that

sup
x∈Rn

(
1 +

r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥[b,R∗(f)]∥Lp(B(x,r)) < ε for small r,

we use the estimate (28):

φ2(x, r)
−1r−n/p∥[b,R∗(f)]∥Lp(B(x,r)) .

[b]θ
φ2(x, r)

∫ ∞

r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
.

We take r < δ0 where δ0 will be chosen small enough and split the integration:(
1 +

r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥[b,R∗(f)]∥Lp(B(x,r)) ≤ C[Iδ0(x, r) + Jδ0(x, r)], (37)
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where

Iδ0(x, r) :=

(
1 + r

ρ(x)

)α
φ2(x, r)

∫ δ0

r

(
1 + ln

t

r

) ∥f∥Lp(B(x0,t))

t
n
p

dt

t

and

Jδ0(x, r) :=

(
1 + r

ρ(x)

)α
φ2(x, r)

∫ ∞

δ0

(
1 + ln

t

r

) ∥f∥Lp(B(x0,t))

t
n
p

dt

t
.

We choose a fixed δ0 > 0 such that

sup
x∈Rn

(
1 +

r

ρ(x)

)α
φ1(x, r)

−1r−n/p∥f∥Lp(B(x,r)) <
ε

2CC0
, r ≤ δ0,

where C and C0 are constants from (37) and (14), which yields the estimate of the first term
uniform in r ∈ (0, δ0) : sup

x∈Rn
CIδ0(x, r) <

ε
2 , 0 < r < δ0.

For the second term, writing 1 + ln t
r ≤ 1 + |ln t|+ ln 1

r , we obtain

Jδ0(x, r) ≤
cδ0 + c̃δ0 ln 1

r

φ2(x, r)
∥f∥

Mα,V
p,φ1

,

where cδ0 is the constant from (16) with δ = δ0 and c̃δ0 is a similar constant with omitted logarith-
mic factor in the integrand. Then, by (15) we can choose small r such that supx∈Rn Jδ0(x, r) <

ε
2 ,

which completes the proof.

7. Conclusion

In this paper, we obtain estimates for the higher order Riesz transforms R, R∗ and their

commutators [b,R], [b,R∗] on local generalized Morrey space LM
α,V,{x0}
p,φ (Rn), generalized Mor-

rey space Mα,V
p,φ (Rn) and vanishing generalized Morrey space VMα,V

p,φ (Rn) related to Schrödinger
type operator.
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