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1. Introduction and notations

We denote the set of all sequences of complex entries by ω. Any vector subspace of ω is called

a sequence space. We write ℓ∞, c, c0 and f , for the spaces of all bounded, convergent, null and

almost convergent sequences, respectively. Also by bs, cs, ℓ1 and ℓp we denote the spaces of all

bounded, convergent, absolutely and p−absolutely convergent series, respectively.

A sequence space λ with linear topology is called a K−space if each of the maps rn : λ → C
defined by rn(x) = xn is continuous for all x = (xn) ∈ λ and every n ∈ N, where C denotes

the complex field and N = {0, 1, 2, . . .}. A Fréchet space is a complete linear metric space. A

K-space λ is called an FK-space if λ is a complete linear metric space. A normed FK-space is

called a BK-space. Given a BK-space λ we denote the nth section of a sequence x = (xk) ∈ λ by

x[n] =
n∑

k=0

xke
k and we say that x is; AK (abschnittskonvergent) when limn→∞

∥∥x− x[n]
∥∥
λ
= 0,

AB (abschnittsbeschränkt) when supn∈N
∥∥x[n]∥∥

λ
< ∞ and AD (abschnittsdicht) when ϕ is dense

in λ, where en is a sequence whose only non-zero term is 1 in nth place for each n ∈ N and ϕ is

the set of all finitely non-zero sequences. If one of these properties holds for every x ∈ λ, then

we said that the space λ has that property. It is trivial that AK implies AB and AD.

Definition 1.1. Let X be a real or complex linear space, g be a function from X to the set

R of real numbers. Then, the pair (X, g) is called a paranormed space and g is a paranorm for

X, if the following axioms are satisfied for all elements x, y ∈ X and for all scalars α:

(i) g(θ) = 0 if x = θ, where θ is the zero element of X,

(ii) g(x) ≥ 0,

(iii) g(x) = g(−x),

(iv) g(x+ y) ≤ g(x) + g(y),

(v) If (αn) is a sequence of scalars with lim
n→∞

αn = α and (xn) is a sequence in X with

lim
n→∞

g(xn − x) = 0, then lim
n→∞

g(αnxn − αx) = 0.
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A paranorm g is said to be total, if g(x) = 0 implies x = θ. Let g be a paranorm on a sequence

space λ. If g(x) ̸= g(|x|) for at least one sequence in λ, then λ is called a sequence space of

non-absolute type; where |x| = (|xk|).
For simplicity in notation, here and in what follows, the summation without limits runs from

0 to ∞. We use the notation O(1) as in [28], that is, ”f = O(ϕ)” means ”|f | < mϕ”, where m

is a constant.

If a sequence space λ paranormed by g contains a sequence (bn) with the property that for

every x ∈ λ there is a unique sequence of scalars (αn) such that

lim
n→∞

g

(
x−

n∑
k=0

αkbk

)
= 0

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑
k

αkbk which has the

sum x is then called the expansion of x with respect to (bn) and written as x =
∑
k

αkbk.

Following Hamilton and Hill [27], Maddox [35, 36] gave the following definition:

Definition 1.2. Let A = (ank)n,k∈N be an infinite matrix over the complex field C and

p = (pk) be a sequence of positive numbers. Then, a sequence x ∈ ω is said to be strongly

summable by A to ℓ if ∑
k

ank|xk − ℓ|pk

exists for each n ∈ N and tends to zero as n → ∞, this is denoted by xk → ℓ[A, p]. If∑
k

ank|xk|pk = O(1), then we say that x is strongly bounded by A and denoted by xk = O(1)[A, p].

Let A denote the class of all infinite matrices A = (ank)n,k∈N for which there exists a positive

integer K such that

(i∗) ank ≥ 0 for each n ≥ 1 and for each k > K,

(ii) lim
n→∞

(|ank| − ank) = 0 for 1 ≤ k ≤ K.

Two important subclasses of A are the nonnegative matrices, and the matrices satisfying (i∗)

and the condition ank → αk as n → ∞ for 1 ≤ k ≤ K, [35]. Uniqueness of strong limit is

characterized for matrices in A by Maddox [35] as:

Lemma 1.1. [35, Theorem 2] Suppose A is in A and (pk) is bounded for all k ∈ N. Then,

the limit of a strongly summable sequence is unique if and only if one (at least) of the following

fails to hold:

(i)
∑
k

ank converges for each n ∈ N,

(ii) lim
n→∞

∑
k

ank = 0.

Definition 1.3. [35] The pair (A, p) consisting of a matrix A and a positive sequence p = (pk)

is said to be a strongly regular method if xk → ℓ as k → ∞ implies xk → ℓ[A, p].

In the case pk = p > 0 for all k ∈ N it was shown in [27] that necessary and sufficient

conditions for strong regularity are

lim
n→∞

ank = 0 for each k ∈ N, (1)

sup
n∈N

∑
k

|ank| < ∞, (2)

that is, (A, p) is strongly regular if and only if A maps null sequences into null sequences.
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Using Definition 3.1. and following Hamilton and Hill [27], Maddox [35] gave the following

results:

Theorem 1.1. The following statements hold:

(i) [35, Theorem 3] Let m and M be constants such that 0 < m ≤ pk ≤ M for all k ∈ N,
then (A, p) is strongly regular if and only if the conditions (1) and (2) hold.

(ii) [35, Theorem 4] Suppose that (1) and (2) hold and the sequence (pk) converges to a

positive limit. Then, lim
k→∞

xk = ℓ implies that xk → ℓ[A, p] uniquely if and only if

lim sup
n→∞

∣∣∣∣∣∑
k

ank

∣∣∣∣∣ > 0.

(iii) [35, Result of Theorem 5] Suppose that A ∈ A and ∥A∥ < ∞. Let 0 < pk ≤ qk and qk/pk
be bounded for all k ∈ N. Then, xk → ℓ[A, q] implies xk → ℓ[A, p].

2. Maddox’s spaces

In this section, we give definitions and some topological properties of Maddox’s spaces.

Maddox [35, 36] used the notations [A, p], [A, p]∞ and [A, p]0 for the sets of x ∈ ω which are

strongly summable, strongly bounded and strongly summable to zero by A, respectively.

Taking A to be the unit matrix I, Maddox [35] introduced the spaces [I, p]∞ = ℓ∞(p) given

in [58] for the case 0 < pk ≤ 1 and [I, p] = c(p), [I, p]0 = c0(p) as

ℓ∞(p) :=

{
x = (xk) ∈ ω : sup

k∈N
|xk|pk < ∞

}
,

c(p) :=

{
x = (xk) ∈ ω : ∃ℓ ∈ C such that lim

k→∞
|xk − ℓ|pk = 0

}
,

c0(p) :=

{
x = (xk) ∈ ω : lim

k→∞
|xk|pk = 0

}
,

and taking the summation matrix S = (snk) and Cesàro matrix C = (cnk) of order one instead

of the matrix A, he gave the spaces [S, p] = ℓ(p) established in [58] for the case 0 < pk ≤ 1 and

[C, 1, p] = ω(p), [C, 1, p]0 = ω0(p) and [C, 1, p]∞ = ω∞(p), respectively, as

ℓ(p) :=

{
x = (xk) ∈ ω :

∑
k

|xk|pk < ∞

}
,

ω(p) :=

{
x = (xk) ∈ ω : ∃ℓ ∈ C such that lim

n→∞

1

n

n∑
k=1

|xk − ℓ|pk = 0

}
,

ω0(p) :=

{
x = (xk) ∈ ω : lim

n→∞

1

n

n∑
k=1

|xk|pk = 0

}
,

ω∞(p) :=

{
x = (xk) ∈ ω : sup

n∈N

1

n

n∑
k=1

|xk|pk < ∞

}
,

where S = (snk) and C = (cnk) are

snk =

{
1 , 0 ≤ k ≤ n,

0 , k > n
and cnk =

{
1/n , 0 ≤ k ≤ n,

0 , k > n
(3)

for all k, n ∈ N. In the case (pk) are constant and equal to p > 0 for k ∈ N we write ℓ(p) = ℓp,

ω(p) = ωp, etc.
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Taking (pk) is a sequence of real numbers such that 0 < pk < supk∈N pk < ∞, Nanda [53, 55]

introduced the spaces f0(p), f(p) and f̂(p) by

f0(p) :=
{
x = (xk) ∈ ω : lim

m→∞
|tmn(x)|pm = 0 uniformly in n

}
,

f(p) :=
{
x = (xk) ∈ ω : ∃ℓ ∈ C ∋ lim

m→∞
|tmn(x)− ℓ|pm = 0 uniformly in n

}
,

f̂(p) :=

{
x = (xk) ∈ ω : sup

m,n∈N
|tmn(x)|pm < ∞

}
,

where

tmn(x) =
1

m+ 1

m∑
k=0

xn+k

for all m,n ∈ N. If we take pk = p > 0 for k ∈ N, then we write

f̂(p) = f̂ =

{
x ∈ ω : sup

m,n∈N
|tmn(x)|p < ∞

}
,

(see [55]).

Following him, Başar [14] introduced the spaces bs(p) and b̂s(p) by

bs(p) := {x = (xk) ∈ ω : Px ∈ ℓ∞(p)} ,

b̂s(p) :=
{
x = (xk) ∈ ω : Px ∈ f̂(p)

}
,

where Px denotes the sequence of partial sums of an infinite series
∑
k

xk, i.e. (Px)n =
n∑

k=0

xk

for all n ∈ N.
We shall assume throughout thatN denotes the finite subsets of N and F denotes the collection

of all finite subsets of N.

3. Some topological properties of Maddox’s spaces

Before Maddox, Bourgin [20], Nakano [50, 51, 52], Landsberg [32] and Simons [58] used the

spaces ℓ(p) and ℓ∞(p), as follows:

Let L be a linear topological space, A be a bounded open set in L and A′ = {λx : |λ| ≤ 1, x ∈
A}. Define the quasi norm ∥x∥ by ∥x∥ = inf{h : x ∈ hA′}.

Lemma 3.1. [20, Theorem 13] If L is locally bounded, the quasi norm on L satisfies

∥x1 + x2∥ ≤ bA(∥x1∥+ ∥x2∥)

for some bA ≥ 1 depending on A and L.

bA in Lemma 3.1. is called the multiplier of the quasi norm. The quantity

βL = inf{bA : A bounded and open in L}

is a characteristic of L, [20].

Taking pk = (1 + log(k + 1)−1/2)−1 for all k ∈ {1, 2, ...}, Bourgin [20] considered the linear

sequence space ℓ(p) with the metric d(x, y) =
∞∑
k=1

|xk − yk|pk and he showed that βℓ(p) is not a

possible multiplier.
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For a sequence of positive numbers (pk) with pk ≥ 1 , Nakano [51] defined the sequence

space ℓ(p1, p2, ...) consists of the sequences x = (xk) such that
∞∑
k=1

1
pk
|αxk|pk < +∞ for some

α > 0. Putting m(x) =
∞∑
k=1

1
pk
|xk|pk for x ∈ ℓ(p1, p2, ...), he obtained a modular (the definiton

of modular given in [50]) m on ℓ(p1, p2, ...), and putting

∥x∥ = inf
m(ξx)≤1

1

|ξ|
, (4)

he introduced a norm on ℓ(p1, p2, ...) which is a complete sequence space with the norm (4).

Taking pk < 1 and x ∈ ℓ(p) and putting m(x) =
∞∑
k=1

|xk|pk , Nakano [52] obtained a concave

modular m(x) on ℓ(p). Also, he gave the following result: ”Every bounded linear functional φ

on ℓ(p) is represented in the form

φ(x) =

∞∑
k=1

akxk,

where a = (ak) ∈ ℓ∞ and x = (xk) ∈ ℓ(p).

Definition 3.1. [32] The following statements hold:

(i) If 0 < r ≤ 1, a non-void subset U of a linear space is said to be absolutely r−convex

provided that

|λ|r + |µ|r ≤ 1 imply that λx+ µy ∈ U, (x, y ∈ U),

or equivalently,
n∑

i=1

|λi|r ≤ 1 imply that

n∑
i=1

λixi ∈ U, (x1, ..., xn ∈ U).

(ii) A linear topological space is said to be r−convex if there is a neighbourhood base of 0

that consists of absolutely r−convex sets.

Let L be a linear sequence space containing all finite sequences, and (pk) be a sequence of

real numbers with 0 < pk ≤ 1 and 0 < lim inf
k→∞

pk < 1 for all k ∈ N. All x = (xn) ∈ L with

d(x) =
∑
k

|xk|pk < +∞ form a linear sequence space ℓ(L; (pk)), which is defined by the metric

d(x−y) for x, y ∈ ℓ(L; (pk)), becomes a linear topological space. The space ℓ(L; (pk)) is r−convex

for every r with 0 < r < lim inf
k→∞

pk, but can not be s−convex for any s with lim inf
k→∞

pk < s ≤ 1,

Landsberg [32]. If we take L = ω, we have the space ℓ(p).

Writing τp and τ∞p for the topology introduced on ℓ(p) and ℓ∞(p) by the metrics d(x, y) =

g(x− y) and d1(x, y) = g1(x− y), respectively, defined by

g(x) =
∑
k

|xk|pk and g1(x) = sup
k

|xk|pk ,

Simons [58] gave the following results:

Theorem 3.1. The following statements hold:

(i) [58, Lemma 1] (ℓ(p), τp) is a complete linear topological space.

(ii) [58, Lemma 2] If 0 < pk ≤ qk ≤ 1 for all k ∈ N, then
(1) ℓ(p) ⊂ ℓ(q),

(2) The identity map (ℓ(p), τp) → (ℓ(q), τq) is continuous,

(3) ℓ(p) is dense in (ℓ(q), τq).
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(iii) [58, Theorem 1] If 0 < pk ≤ qk ≤ 1 for all k ∈ N, then the following four conditions are

equivalent:

(1) τp is the topology induced on ℓ(p) by τq.

(2) If (xn)n∈N ∈ ℓ(p) and xn → 0 in τq as n → ∞, then xn → 0 in τp as n → ∞.

(3) ℓ(p) is closed in (ℓ(q), τq).

(4) ℓ(p) = ℓ(q).

(iv) [58, Theorem 3] Let 0 < pk ≤ 1 for all k ∈ N and 1/pk + 1/qk = 1. Then, the following

two conditions are equivalent:

(1) ℓ(p) = ℓ1.

(2)
∑
k

Bqk < ∞ for some integer B > 1.

(v) [58, Theorem 5] The following four conditions on (pk) are equivalent:

(1) (ℓ(p), τp) is locally convex.

(2) ℓ(p) = ℓ1.

(3) τp is identical with the topology induced on ℓ(p) by τ1.

(4) ℓ(p) is closed in (ℓ1, τ1).

(vi) [58, Theorem 7] The following three conditions on (ζk) are equivalent:

(1) The map (xn) →
∑
k

xkζk is a continuous linear functional on (ℓ(p), τp).

(2)
∑
k

xkζk is convergent for all (xk) ∈ ℓ(p).

(3) (ζk) ∈ ℓ∞(p).

(vii) [58, Theorem 8] If 0 < pk ≤ qk ≤ 1 for all k ∈ N, then the following conditions are

equivalent:

(1) τ∞q is the topology induced on ℓ∞(q) by τ∞p .

(2) The identity map (ℓ∞(q), τ∞q ) → (ℓ∞(q), τ∞p ) is continuous.

(3) There exists B > 1 such that Bpk ≥ qk for all k ∈ N.
(4) ℓ∞(p) = ℓ∞(q).

(5) ℓ∞(q) is dense in (ℓ∞(p), τ∞p ).

(viii) [58, Theorem 9] The following five conditions on (pk) are equivalent:

(1) τ∞ is the topology induced on ℓ∞ by τ∞p , where τ∞ is the topology on ℓ∞ defined by

the supremum metric.

(2) The identity map (ℓ∞, τ∞) → (ℓ∞, τ∞p ) is continuous.

(3) inf
k∈N

pk > 0.

(4) ℓ∞ is dense in (ℓ∞(p), τ∞p ).

(5) (ℓ∞(p), τ∞p ) is a linear topological space.

If we take 0 < pk ≤ qk for all k ∈ N, then it is true that ℓ(p) ⊂ ℓ(q). We note that no

restriction such as boundedness has to be placed on the sequences (pk), (qk) for the validity of

the inclusion. But the inclusion ω(p) ⊂ ω(q) does not hold when 0 < pk ≤ qk. This brings out

an immediate distinction between the spaces ℓ(p) and ω(p), [35].

Also, one can find that the boundedness of p = (pk) is sufficient for the spaces [A, p] and

[A, p]∞ to be linear spaces in Theorem 1 of [35]. So, the argument of [35] shows that [A, p]0 is

linear when p = (pk) is bounded. It was also noted in [35] that pk = O(1) is necessary for the

linearity of the spaces ℓ(p) and ω(p). In [36], Maddox showed that c(p) is a linear space only

if pk = O(1). In general, pk = O(1) is not necessary for [A, p], [A, p]0 and [A, p]∞ to be linear

spaces.

In the case, 0 < pk ≤ 1 for all k ∈ N, the inequality |xk + yk|pk ≤ |xk|pk + |yk|pk suggests the

natural paranorm
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g(x) = sup
n∈N

∑
k

ank|xk|pk (5)

for the spaces [A, p]∞ and [A, p]0. In general [A, p] is not a subset of [A, p]∞ so that (5) is not

suitable for [A, p]. In the more general case pk = O(1), a suitable paranorm for [A, p]∞ and

[A, p]0 is

gA(x) = sup
n∈N

(∑
k

ank|xk|pk
)1/M

, (6)

where M = max{1, pk}, which gives (5) when 0 < pk ≤ 1 for all k ∈ N, [36].
For arbitrary A and (pk), we have the inclusions [A, p]0 ⊂ [A, p] and [A, p]0 ⊂ [A, p]∞. For

the inclusion [A, p] ⊂ [A, p]∞ holds the necessary condition is that

∥A∥ = sup
n∈N

∑
k

ank < ∞, (7)

whether (pk) is bounded or not. If (pk) is bounded then (7) is sufficient for [A, p] ⊂ [A, p]∞.

Thus, in this case we have that [A, p] is a subset of [A, p]∞ if and only if (7) holds, and then we

may do the space [A, p] a paranormed space with the paranorm (6). Also, the spaces [A, p]0 and

[A, p]∞ are complete, [39].

Theorem 3.2. The following statements hold:

(i) [36, Theorem 1] For any nonnegative matrix A and any bounded sequence p = (pk), the

space [A, p]0 is paranormed space by the paranorm (6).

(ii) [36, Corollary 2 of Theorem 1] If A is a nonnegative matrix and 0 < inf pk ≤ sup pk < ∞
for all k ∈ N, the space [A, p]∞ is paranormed space by the paranorm (6).

(iii) [36, Theorem 2] ω∞(p) is paranormed space by the paranorm (6) if and only if 0 <

inf pk ≤ sup pk < ∞.

In 1969, Maddox [39, 40] studied some topological properties of the spaces [A, p], [A, p]0 and

[A, p]∞ as:

Theorem 3.3. Define the set S by S = {k : 0 < supn∈N ank < ∞} and let A = (ank) be a lower

semi-matrix such that ank → 0 as n → ∞ for all fixed k ∈ N. Then, the following statements

hold:

(i) [40, Theorem] [A, p]0 and [A, p] are linear if and only if supk∈S pk < ∞.

(ii) [39, Theorem 3] Let ank ≤ M for all n, k ∈ N and lim inf
n→∞

∑
k

ank > 0. Then, [A, p] is

linear if and only if supk∈N pk < ∞.

(iii) [39, Theorem 4] Let Mk = supn∈N ank > 0 for each k ∈ N. Then, [A, p]∞ is paranormed

space by the paranorm (6).

(iv) [39, Theorem 1] For an arbitrary A, [A, p]∞ is linear if and only if supk∈S pk < ∞.

(v) [39, Theorem 5] Let pk = O(1) and ∥A∥ < ∞ for an arbitrary A. Then, either of the

following conditions is sufficient for [A, p] to be complete:

(1) lim sup
n→∞

∑
k

ank = 0.

(2) lim sup
n→∞

∑
k

ank > 0 and inf pk > 0.

(vi) [39, Theorem 6] Let pk = O(1). Then c(p) and ω(p), equipped with their natural para-

norms are complete.
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Thus, in the light of above information we can write: Let (pk) be a bounded sequence of

strictly positive real numbers with supk∈N pk = H and M = max{1,H}. ℓ(p) is a linear space if

and only if H < ∞ and it is a complete paranormed space (cf. [35, 39]) with

g(x) =

(∑
k

|xk|pk
)1/M

.

The sets c0(p), c(p) and ℓ∞(p) are linear spaces if and only if p = (pk) ∈ ℓ∞. If p = (pk) ∈ ℓ∞
and infk∈N pk > 0 then the sets c0(p), c(p) and ℓ∞(p) reduce to the classical sets c0, c and ℓ∞,

respectively. The identities c0(p) = c0, c(p) = c and ℓ∞(p) = ℓ∞ are satisfied if and only if

0 < infk∈N pk and supk∈N pk < ∞. The function

g1(x) = sup
k∈N

|xk|pk/M

on the spaces ℓ∞(p), c(p) and c0(p) introduced a topology τg1 via the corresponding metric

d(x, y) = g1(x− y). Then, c(p) and c0(p) are complete paranormed spaces paranormed by g1 if

p = (pk) ∈ ℓ∞. Also, ℓ∞(p) is a complete paranormed space by g1 if and only if infk∈N pk > 0. In

ℓ∞(p), g1 is a paranorm and τg1 is a linear topology only in the trivial case infk∈N pk > 0, when

ℓ∞(p) = ℓ∞. Indeed the natural topology of ℓ∞(p) is not metrizable, hence not paranormable

unless ℓ∞(p) = ℓ∞. In c0(p), g1 is a paranorm (without the restriction infk∈N pk > 0) and τg1 is

an FK topology, so that by the uniqueness of FK topologies [62, Corollary 4.4.2] τg1 coincides

with the projective limit topology. In c(p), again g1 is a paranorm and τg1 is a linear topology

only if infk∈N pk > 0, when c(p) = c. But, in contrast to ℓ∞(p), the natural topology of c(p)

can be induced by a paranorm. A convenient one is g2(x) = g1(x − ξe), where ξ is the unique

number with x− ξe ∈ c0(p) and e = (1, 1, 1, . . .), (cf. [58, 35, 36, 38, 41]).

Theorem 3.4. Nanda [53, 55] gave the following results:

(i) [53, Proposition 1] The inclusions c0(p) ⊂ f0(p), c(p) ⊂ f(p) and f0(p) ⊂ f(p) hold.

(ii) [53, Proposition 2] If 0 < pk ≤ qk < ∞ for all k ∈ N, then the inclusions f0(p) ⊂ f0(q)

and f(p) ⊂ f(q) hold.

(iii) [53, Theorem 1] The space f0(p) is a complete linear topological space paranormed by g

defined by

g(x) = sup
m,n∈N

|tmn(x)|pm/M . (8)

If infm∈N pm > 0, then f(p) is a complete linear topological space with respect to the

paranormed g.

(iv) [53, Proposition 3] The spaces f0(p) and f(p) are 1-convex.

(v) [55, Theorem 1] Let infk∈N pk > 0 for all k ∈ N. Then, the space f̂(p) is a complete

linear topological space paranormed by g defined as in (8).

(ii) [55, Proposition 1] f̂(p) is 1−convex.

(iii) [55, Theorem 2] Let 0 < pk ≤ qk < ∞ for all k ∈ N. Then, f̂(q) is a closed subspace of

f̂(p).

Başar [14] obtained that: The space b̂s(p) is linearly isomorphic to the space f̂(p). Following

him, Başar and Altay [16] gave the following results:

Theorem 3.5. The following statements hold:
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(i) [16, Theorem 2.1] The space bs(p) is a complete linear metric space paranormed by g

defined by

g(x) = sup
k∈N

∣∣∣∣∣ 1

k + 1

k∑
i=0

xi

∣∣∣∣∣
pk/M

iff inf
k∈N

pk > 0.

(ii) [16, Theorem 2.2]

(1) bs(p) ⊂ bs if and only if h = infk∈N pk > 0.

(2) bs(p) ⊃ bs if and only if H = supk∈N pk > 0.

(3) bs(p) = bs if and only if 0 < h ≤ H < ∞.

4. Some new Maddox’s spaces

In this section, we assume that p = (pk) be a bounded sequence of strictly positive real

numbers with supk∈N pk = H and M = max{1,H} unless stated otherwise.
Let U denotes the set of all sequences u = (uk) such that uk ̸= 0 for all k ∈ N. Define the

matrices difference ∆ = (dnk), Riesz R
t = (rtnk), NörlundN t = (utnk), generalized weighted mean

or factorable G(u, ν) = (gnk), generalized difference B(r, s) = (bnk(r, s)), double sequential band
B(r̃, s̃) = (bnk(rk, sk)), triple band B(r, s, t) = (bnk(r, s, t)), double band F = (fnk), A

r = (arnk)
and Au = (aunk) by

dnk =

{
(−1)n−k , n− 1 ≤ k ≤ n,

0 , otherwise
, rtnk =

{
tk/Tn , 0 ≤ k ≤ n,

0 , k > n

ut
nk =

{
tn−k/Tn , 0 ≤ k ≤ n,

0 , k > n
, gnk =

{
unνk , 0 ≤ k ≤ n,

0 , otherwise

bnk(r, s) =


r , k = n,

s , k = n− 1,

0 , otherwise

, bnk(rk, sk) =


rk , k = n,

sk , k = n− 1,

0 , otherwise

fnk =


− fn+1

fn
, k = n− 1,

− fn
fn+1

, k = n,

0 , otherwise

bnk(r, s, t) =


r , n = k,

s , n = k + 1,

t , n = k + 2,

0 , otherwise

arnk =

{
1+rk

n+1 υk , 0 ≤ k ≤ n,

0 , k > n
aunk =

{
(−1)n−kuk , n− 1 ≤ k ≤ n,

0 , otherwise
(9)

for all k, n ∈ N, respectively; where (tk) is a sequence of positive numbers, Tn =
n∑

k=0

tk =
n∑

k=0

tn−k for all

n ∈ N, r, s, t ∈ R\{0}, r̃ = (rk) and s̃ = (sk) are the convergent sequences whose entries either constants

or distinct non-zero numbers for all k ∈ N, υ, u, ν ∈ U and (fn) is a sequence of Fibonacci numbers

defined by the linear recurrence relations

fn =

{
1 , n = 0, 1,

fn−1 + fn+1 , n ≥ 2

and denote the Euler matrix of order r with Er = (ernk) defined by

ernk =

{ (
n
k

)
(1− r)n−krk , 0 ≤ k ≤ n

0 , otherwise

for all k, n ∈ N, where 0 < r < 1.

The summability domain λA of an infinite matrix A in a sequence space λ is defined by



12 TWMS J. PURE APPL. MATH., V.10, N.1, 2019

λA = {x = (xk) ∈ ω : Ax ∈ λ}. (10)

Taking (pk) not necessarily bounded, Ahmad and Mursaleen [1] and Malkowsky [44] introduced the

spaces ∆ℓ∞(p), ∆c(p) and ∆c0(p) as

∆ℓ∞(p) := {x = (xk) ∈ ω : ∆x ∈ ℓ∞(p)} ,
∆c(p) := {x = (xk) ∈ ω : ∆x ∈ c(p)} ,
∆c0(p) := {x = (xk) ∈ ω : ∆x ∈ c0(p)} .

Following them, Choudhary and Mishra [22] defined the same spaces with bounded (pk) and gave the

following results:

(i) [22, Properties] ∆ℓ∞(p) and ∆c(p) are paranormed spaces with the paranorm

g(x) = sup
k∈N

|∆x|pk/M (11)

if and only if 0 < infk∈N pk ≤ H < ∞ for all k ∈ N.
(ii) [22, Properties] If p = (pk) is a bounded sequence, then ∆c0(p) is a paranormed space with the

paranorm (11).

Altay and Başar [2, 4] defined the Riesz sequence spaces rt(p), rt∞(p), rtc(p) and rt0(p) as the domain

of the Riesz matrix in the spaces ℓ(p), ℓ∞(p), c(p) and c0(p), respectively, as

rt(p) := {x = (xk) ∈ ω : Rx ∈ ℓ∞(p)} ,
rt∞(p) := {x = (xk) ∈ ω : Rx ∈ ℓ∞(p)} ,
rtc(p) := {x = (xk) ∈ ω : Rx ∈ c(p)} ,
rt0(p) := {x = (xk) ∈ ω : Rx ∈ c0(p)} .

If we take (pk) = e for all k ∈ N the spaces rt∞(p), rtc(p) and rt0(p) are reduced the spaces rt∞, rtc and rt0
introduced by Malkowsky [46]. One can find the following results in their papers:

Theorem 4.1. The following statements hold:

(i) [2, Theorem 2.1] rt(p) is a complete linear metric space paranormed by g, defined by

g(x) =

∑
k

∣∣∣∣∣∣ 1Tk

k∑
j=0

tjxj

∣∣∣∣∣∣
pk
1/M

with 0 < pk ≤ H < ∞.

(ii) [2, Theorem 2.3] The Riesz sequence space rt(p) of non-absolute type is linearly isomorphic to

the space ℓ(p), where 0 < pk ≤ H < ∞.

(iii) [4, Theorem 2.1] rt∞(p), rtc(p) and rt0(p) are the complete linear metric spaces paranormed by g,

defined by

g(x) = sup
n∈N

∣∣∣∣∣∣ 1Tk

k∑
j=0

tjxj

∣∣∣∣∣∣
pk/M

.

g is a paranorm for the spaces rt∞(p) and rtc(p) only in the trivial case infk∈N pk > 0 when

rt∞(p) = rt∞ and rtc(p) = rtc.

(iv) [4, Theorem 2.3] The Riesz sequence spaces rt∞(p), rtc(p) and rt0(p) of non-absolute type are

linearly isomorphic to the spaces ℓ∞(p), c(p) and c0(p), respectively, where 0 < pk ≤ H < ∞.
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Using the notation λ(u, ν; p) for λ ∈ {ℓ∞, c, c0, ℓp}, Altay and Başar [3, 5] defined the spaces λ(u, ν; p)

by

λ(u, ν; p) :=

x = (xk) ∈ ω : y =

 k∑
j=0

ukνjxj

 ∈ λ(p)

 ,

called generalized weighted mean sequence spaces.

It is natural that these spaces may also be redefined with the notation of (10) that

λ(u, ν; p) = {λ(p)}G(u,ν) .

If pk = 1 for all k ∈ N, we write λ(u, ν) instead of λ(u, ν; p) introduced by Malkowsky and Savaş [49].

Following them, Altay and Başar [3, 5] gave the following results:

Theorem 4.2. The following statements hold:

(i) [3, Theorem 2.1(a)] λ(u, ν; p) are the complete linear metric spaces paranormed by g, defined by

g(x) = sup
k∈N

∣∣∣∣∣∣
k∑

j=0

ukνjxj

∣∣∣∣∣∣
pk/M

.

g is a paranorm for the spaces ℓ∞(u, ν; p) and c(u, ν; p) only in the trivial case infk∈N pk > 0

when ℓ∞(u, ν; p) = ℓ∞(u, ν) and c(u, ν; p) = c(u, ν).

(ii) [3, Theorem 2.1(b)] The sets λ(u, ν) are the Banach spaces with the norm ∥x∥λ(u,ν) = ∥y∥λ.
(iii) [3, Theorem 2.2] The generalized weighted mean sequence spaces ℓ∞(u, ν; p), c(u, ν; p) and c0(u, ν; p)

of non-absolute type are linearly isomorphic to the spaces ℓ∞(p), c(p) and c0(p), respectively,

where 0 < pk ≤ H < ∞.

(iv) [3, Theorem 2.3] The sequence space c0(u, ν) has AD property whenever u ∈ c0.

(v) [5, Theorem 2.1(a)] ℓ(u, ν; p) is a complete linear metric spaces paranormed by g, defined by

g(x) =

∑
k

∣∣∣∣∣∣
k∑

j=0

ukνjxj

∣∣∣∣∣∣
pk
1/M

.

(vi) [5, Theorem 2.1(b)] Let 1 ≤ p < ∞. Then, ℓp(u, ν) is a Banach space with the norm ∥x∥ℓp(u,ν) =
∥y∥ℓp .

(vii) [5, Theorem 2.2] The sequence space ℓ(u, ν; p) of non-absolute type is linearly isomorphic to the

space ℓ(p), where 0 < pk ≤ H < ∞.

(viii) [5, Theorem 2.3] Let u ∈ ℓ1 and 1 ≤ p < ∞. Then, the sequence space ℓ(u, ν; p) has AD property.

Aydın and Başar [9, 10] defined the spaces ar0(υ, p), a
r
c(υ, p) and ar(υ, p) as the domain of the Ar

matrix in the spaces c0(p), c(p) and ℓ(p), respectively, as

ar0(υ, p) := {x = (xk) ∈ ω : Arx ∈ c0(p)} ,
arc(υ, p) := {x = (xk) ∈ ω : Arx ∈ c(p)} ,
ar(υ, p) := {x = (xk) ∈ ω : Arx ∈ ℓ(p)} .

In the case (υk) = (pk) = e for all k ∈ N the spaces ar0(υ, p) and arc(υ, p) are reduced the spaces ar0 and arc
introduced by Aydın and Başar [11] and in the cases pk = p for all k ∈ N and (υk) = e, the space ar(υ, p)

is reduced the spaces arp(υ) and arp, respectively, where arp is introduced by Aydın and Başar [12].

Theorem 4.3. The following statements hold:

(i) [9, Theorem 2.1] The spaces ar0(υ, p) and arc(υ, p) are the complete linear metric spaces para-

normed by g, defined by

g(x) = sup
k∈N

∣∣∣∣∣∣ 1

k + 1

k∑
j=0

(1 + rj)υjxj

∣∣∣∣∣∣
pk/M

.
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g is a paranorm for the space arc(υ, p) only in the trivial case infk∈N pk > 0 when arc(υ, p) = arc.

(ii) [9, Theorem 2.2] The sequence spaces ar0(υ, p) and arc(υ, p) of non-absolute type are linearly

isomorphic to the spaces c0(p) and c(p), respectively, where 0 < pk ≤ H < ∞.

(iii) [10, Theorem 2.1] ar(υ, p) is a complete linear metric spaces paranormed by g, defined by

g(x) =

∑
k

∣∣∣∣∣∣ 1

k + 1

k∑
j=0

(1 + rj)υjxj

∣∣∣∣∣∣
pk
1/M

,

where 0 < pk ≤ H < ∞ for all k ∈ N.
(iv) [10, Theorem 2.2] arp(υ) is the linear space under the coordinatewise addition and scalar multi-

plication, which is the BK−space with the norm

∥x∥ =

∑
k

∣∣∣∣∣∣ 1

k + 1

k∑
j=0

(1 + rj)υjxj

∣∣∣∣∣∣
p1/p

,

where 1 ≤ p < ∞.

(ii) [10, Theorem 2.3] The sequence space ar(υ, p) of non-absolute type is linearly isomorphic to the

space ℓ(p), where 0 < pk ≤ H < ∞ for all k ∈ N.

Asma and Çolak [7] and Başar et al. [18] defined the spaces λ(u,∆, p) and bv(u, p) as the set of

all sequences such that Au−transforms of them are in the spaces λ(p) and ℓ(p), respectively, where

λ ∈ {c0, c, ℓ∞} that is

ℓ∞(u,∆, p) = bv∞(u, p) := {x = (xk) ∈ ω : {uk∆xk} ∈ ℓ∞(p) < ∞} ,
c(u,∆, p) := {x = (xk) ∈ ω : {uk∆xk} ∈ c(p)} ,
c0(u,∆, p) := {x = (xk) ∈ ω : {uk∆xk} ∈ c0(p)} ,

bv(u, p) := {x = (xk) ∈ ω : {uk∆xk} ∈ ℓ(p)} , (0 < pk ≤ H < ∞).

Then, they obtained the following results:

(i) [7, Theorem 1.1] Let (pk) be a bounded sequence of strictly positive real numbers and u ∈
U . Then, c0(u,∆, p) is a paranormed space with paranorm g(x) = supk∈N |uk∆xk|pk/M . If

infk∈N pk > 0, then ℓ∞(u,∆, p) and c(u,∆, p) are paranormed space with the same paranorm.

(ii) [18, Theorem 2.1] The space bv(u, p) is a complete linear metric space paranormed by g defined

by

g(x) =

(∑
k

|uk∆xk|pk

)1/M

,

where 0 < pk ≤ H < ∞ for all k ∈ N.
(iii) [18, Theorem 2.3] The sequence spaces bv(u, p) and bv∞(u, p) of non-absolute type are linearly

isomorphic to the spaces ℓ(p) and ℓ∞(p), respectively, where 0 < pk ≤ H < ∞.

Kara et al. [30] defined the Euler sequence space er(p) as the domain of the Euler matrix of order r,

Er in the space ℓ(p) as

er(p) := {x = (xk) ∈ ω : Erx ∈ ℓ(p)} , (0 < pk ≤ H < ∞).

Then, they gave the following results:

(i) [30, Theorem 1] er(p) is a complete linear topological space paranormed by g defined by

g(x) =

∑
k

∣∣∣∣∣∣
k∑

j=0

(
k

j

)
(1− r)k−jrjxj

∣∣∣∣∣∣
pk
1/M

,

where 0 < pk ≤ H < ∞ for all k ∈ N.
(ii) [30, Theorem 2] The Euler sequence space er(p) of non-absolute type is linearly isomorphic to

the space ℓ(p), where 0 < pk ≤ H < ∞.
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Başar and Çakmak [19] introduced the spaces λ(B, p) as the domain of the triple band matrix B(r, s, t)

in the spaces λ(p), where λ ∈ {c0, c, ℓ∞}, as

λ(B, p) := {x = (xk) ∈ ω : y = (txk−2 + sxk−1 + rxk) ∈ λ(p)} .

If λ is any normed or paranormed sequence space then we call the matrix domain λB(r,s,t) as the gener-

alized difference space of sequences. If pk = 1 for all k ∈ N, we write λ(B) instead of λ(B, p).

Theorem 4.4. Başar and Çakmak [19] gave the following results:

(i) [19, Theorem 2.1(a)] The spaces λ(B, p) are the complete linear metric spaces paranormed by g,

defined by

g(x) = sup
k∈N

|txk−2 + sxk−1 + rxk|pk/M .

g is a paranorm for the spaces ℓ∞(B, p) and c(B, p) only in the trivial case infk∈N pk > 0 when

ℓ∞(B, p) = ℓ∞(B) and c(B, p) = c(B).

(ii) [19, Theorem 2.1(b)] The sets λ(B) are Banach spaces with the norm ∥x∥B(r,s,t) = ∥y∥λ.
(iii) [19, Theorem 2.2] The generalized difference space of sequences ℓ∞(B, p), c(B, p) and c0(B, p) of

non-absolute type are paranormed isomorphic to the spaces ℓ∞(p), c(p) and c0(p), respectively,

where 0 < pk ≤ H < ∞.

(iv) [19, Theorem 2.3] Suppose that | − s +
√
s2 − 4tr| > 2r. Then, the sequence space c0(B) has

AD-property.

Nergiz and Başar [56] and Özger and Başar [59] defined the spaces λ(B̃, p) as the set of all sequences

whose B(r̃, s̃)−transforms are in the spaces ℓ(p) and λ(p), respectively, where λ ∈ {ℓ∞, c, c0}, that is

ℓ(B̃, p) :=

{
x = (xk) ∈ ω :

∑
k

|rkxk + sk−1xk−1|pk < ∞

}
, (0 < pk ≤ H < ∞),

ℓ∞(B̃, p) :=

{
x = (xk) ∈ ω : sup

k∈N
|rkxk + sk−1xk−1|pk < ∞

}
,

c(B̃, p) :=

{
x = (xk) ∈ ω : lim

k→∞
|rkxk + sk−1xk−1 − ℓ|pk = 0 for some ℓ ∈ R

}
,

c0(B̃, p) :=

{
x = (xk) ∈ ω : lim

k→∞
|rkxk + sk−1xk−1|pk = 0

}
.

and they obtained the following results:

(i) [56, Theorem 1] The spaces ℓ(B̃, p) is a complete linear metric spaces paranormed by g, defined

by

g(x) =

(∑
k

|rkxk + sk−1xk−1|pk

)1/M

.

(ii) [56, Theorem 2] Convergence in ℓ(B̃, p) is stronger than coordinatewise convergence.

(iii) [56, Corollray 4] The sequence space ℓ(B̃, p) of non-absolute type is linearly paranorm isomorphic

to the space ℓ(p), where 0 < pk ≤ H < ∞.

(iv) [56, Theorem 5] The space ℓ(B̃, p) is has AK.

(v) [59, Theorem 3.1] The spaces λ(B̃, p) are the complete linear metric spaces paranormed by g,

defined by g(x) = supk∈N |rkxk + sk−1xk−1|pk/M .

Aydın and Altay [8] and Aydın and Başar [13] defined the spaces λ̂(p) and ℓ̂(p) as the set of all

sequences such that B(r, s)−transforms of them are in the spaces λ(p) and ℓ(p), respectively, where
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λ ∈ {ℓ∞, c, c0}, that is

ℓ̂∞(p) :=

{
x = (xk) ∈ ω : sup

k∈N
|sxk−1 + rxk|pk < ∞

}
,

ĉ(p) :=

{
x = (xk) ∈ ω : lim

k→∞
|sxk−1 + rxk − ℓ|pk = 0 for some ℓ ∈ R

}
,

ĉ0(p) :=

{
x = (xk) ∈ ω : lim

k→∞
|sxk−1 + rxk|pk = 0

}
,

ℓ̂(p) :=

{
x = (xk) ∈ ω :

∑
k

|sxk−1 + rxk|pk < ∞

}
, (0 < pk ≤ H < ∞).

In the case pk = p for all k ∈ N the sequence space ℓ̂(p) is reduced to the sequence space ℓ̂p introduced

by Kirişçi and Başar [31].

Theorem 4.5. Aydın and Altay [8] and Aydın and Başar [13] obtained the following results:

(i) [8, Theorem 2.1] The spaces λ̂(p) are the complete linear metric spaces paranormed by g, defined

by

g(x) = sup
k∈N

|sxk−1 + rxk|pk/M .

(ii) [8, Theorem 2.2] The sequence spaces ℓ̂∞(p), ĉ(p) and ĉ0(p) of non-absolute type are linearly

isomorphic to the spaces ℓ∞(p), c(p) and c0(p), respectively, where 0 < pk ≤ H < ∞.

(iii) [13, Theorem 2.1] The space ℓ̂(p) is a complete linear metric spaces paranormed by g, defined by

g(x) =

(∑
k

|sxk−1 + rxk|pk

)1/M

,

where 0 < pk ≤ H < ∞ for all k ∈ N.
(iv) [13, Theorem 2.2] The space ℓ̂p is the linear space under the coordinatewise addition and scalar

multiplication which is the BK-space with the norm

∥x∥ =

(∑
k

|sxk−1 + rxk|p
)1/p

, 1 ≤ p < ∞.

(v) [13, Corollary 2.3] The sequence space ℓ̂(p) of non-absolute type is linearly isomorphic to the

space ℓ(p), where 0 < pk ≤ H < ∞.

Yeşilkayagil and Başar [60, 61] defined the Nörlund sequence spaces N t(p) and λ(N t, p) as the set of all

sequences whose Nörlund transforms are in the spaces ℓ(p) and λ(p), respectively, where λ ∈ {ℓ∞, c, c0},
as

N t(p) := {x = (xk) ∈ ω : Nx ∈ ℓ(p)} ,
ℓ∞(N t, p) := {x = (xk) ∈ ω : Nx ∈ ℓ∞(p)} ,
c(N t, p) := {x = (xk) ∈ ω : Nx ∈ c(p)} ,
c0(N

t, p) := {x = (xk) ∈ ω : Nx ∈ c0(p)} .

Theorem 4.6. Yeşilkayagil and Başar [60, 61] obtained the following results:

(i) [60, Theorem 1] The space N t(p) is a complete linear metric spaces paranormed by g, defined by

g(x) =

∑
k

∣∣∣∣∣∣ 1Tk

k∑
j=0

tk−jxj

∣∣∣∣∣∣
pk
1/M

with 0 < pk ≤ H < ∞.

(ii) [60, Theorem 3] The Nörlund sequence space N t(p) of non-absolute type is linearly isomorphic

to the space ℓ(p), where 0 < pk ≤ H < ∞ for all k ∈ N.
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(iii) [61, Theorem 2.1] The spaces λ(N t, p) are the complete linear metric spaces paranormed by g,

defined by

g(x) = sup
k∈N

∣∣∣∣∣∣ 1Tk

k∑
j=0

tk−jxj

∣∣∣∣∣∣
pk/M

.

(iv) [61, Theorem 2.2] The spaces ℓ∞(N t, p), c(N t, p) and c0(N
t, p) of non-absolute type are linearly

isomorphic to the space ℓ∞(p), c(p) and c0(p), respectively, where 0 < pk ≤ H < ∞ for all k ∈ N.

Çapan and Başar [23] have defined the domain space ℓ(F, p) of the band matrix F in the sequence

space ℓ(p) as

ℓ(F, p) :=

{
x = (xk) ∈ ω :

∑
k

∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣pk

< ∞

}
.

If we take pk = p for all k ∈ N, the space ℓ(F, p) is reduced to the space ℓp(F ).

Theorem 4.7. Çapan and Başar [23] have obtained the following results:

(i) [23, Theorem 2.1] ℓ(F, p) is a linear complete metric space paranormed by g defined by

g(x) =

(∑
k

∣∣∣∣−fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣∣pk
)1/M

with 0 < pk ≤ H < ∞.

(ii) [23, Theorem 2.2] Convergence in ℓ(F, p) is strictly stronger than coordinatewise convergence, but

the converse is not true, in general.

(iii) [23, Theorem 2.4] ℓ(F, p) is a K−space.

(iv) [23, Theorem 2.5] ℓ(F, p) is an FK−space.

(v) [23, Theorem 2.6] ℓp(F ) is the linear space under the coordinatewise addition and scalar mul-

tiplication which is a BK−space with the norm ∥x∥ =

(∑
k

∣∣∣− fk+1

fk
xk−1 +

fk
fk+1

xk

∣∣∣p)1/p

, where

x ∈ ℓp(F ) and 1 ≤ p < ∞.

(vi) [23, Theorem 2.8] ℓp(F ) is a Fréchet space.

(vii) [23, Corollary 2.1] The sequence space ℓp(F ) of non-absolute type is linearly paranorm isomorphic

to the space ℓ(p), where 0 < pk ≤ H < ∞ for all k ∈ N.

Benefiting from Başar’s book [15], we give the following table for the concerning literature about the

domain λA of an infinite matrix A in a Maddox’s space λ:
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Table 1. The domains of some triangle matrices in Maddox’s spaces.

λ A λA refer to:

ℓ∞(p), c(p), c0(p) ∆ ∆ℓ∞(p),∆c(p),∆c0(p) [1, 22, 44]

ℓ∞(p) S bs(p) [14, 16]

ℓ(p) Rt rt(p) [2]

ℓ∞(p), c(p), c0(p) Rt rt∞(p), rtc(p), r
t
0(p) [4]

ℓ∞(p), c(p), c0(p) G(u, ν) ℓ∞(u, ν; p), c(u, ν; p), c0(u, ν; p) [3]

ℓ(p) G(u, ν) ℓ(u, ν; p) [5]

c(p), c0(p) Ar ar
c(υ; p), a

r
0(υ; p) [9]

ℓ(p) Ar ar(υ; p) [10]

ℓ∞(p), c(p), c0(p) Au ℓ∞(u,∆; p), c(u,∆; p), c0(u,∆; p) [7]

ℓ∞(p), ℓ(p) Au bv∞(u,∆; p), bv(u,∆; p) [18]

ℓ(p) Er er(p) [30]

ℓ∞(p), c(p), c0(p) B(r, s, t) ℓ∞(B, p), c(B, p), c0(B, p) [19]

ℓ(p) B(r̃, s̃) ℓ(B̃, p) [56]

ℓ∞(p), c(p), c0(p) B(r̃, s̃) ℓ∞(B̃, p), c(B̃, p), c0(B̃, p) [59]

ℓ∞(p), c(p), c0(p) B(r, s) ℓ̂∞(p), ĉ(p), ĉ0(p) [8]

ℓ(p) B(r, s) ℓ̂(p) [13]

ℓ(p) N t N t(p) [60]

ℓ∞(p), c(p), c0(p) N t ℓ∞(N t, p), c(N t, p), c0(N
t, p) [61]

ℓ(p) F ℓ(F, p) [23]

5. Dual spaces

For the sequence spaces λ and µ, the set S(λ, µ) defined by

S(λ, µ) = {z = (zk) ∈ ω : xz = (xkzk) ∈ µ for all x ∈ λ} , (12)

is called the multiplier space λ and µ. One can observe that for a sequence space η with µ ⊂ η ⊂ λ that

the inclusions S(λ, µ) ⊂ S(η, µ) and S(λ, µ) ⊂ S(λ, η) hold. With the notation of (12), the alpha-, beta-

and gamma-duals of a sequence space λ, which are respectively denoted by λα, λβ and λγ , are defined

by

λα = S(λ, ℓ1), λβ = S(λ, cs) and λγ = S(λ, bs).

Let η ∈ {α, β, γ} and let λ be a sequence space. λ is called a η−space if λ = ληη. Further, an α−space

is also called a Köthe space or perfect sequence space.

Define the sets M(p), M∞(p), M0(p), K(p), S(p), L(p) and Q as:

M(p) :=
∩
B>1

{
a = (ak) ∈ ω :

∑
k

|ak|qkB−pk/qk < ∞

}
,

M∞(p) :=
∩
B>1

{
a = (ak) ∈ ω :

∑
k

|ak|B1/pk < ∞

}
,

M0(p) :=
∪
B>1

{
a = (ak) ∈ ω :

∑
k

|ak|B−1/pk < ∞

}
,

K(p) :=
∩
B>1

{
a = (ak) ∈ ω :

∑
r

max
2r≤k≤2r+1

|2r/pkak| < ∞

}
,

S(p) :=

{
a = (ak) ∈ ω : sup

r∈N
2r max

2r≤k≤2r+1
|ak|pk < ∞

}
,
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L(p) :=
∩
B>1

{
a = (ak) ∈ ω :

∑
r

max
2r≤k≤2r+1

(2rB−1)1/pk |ak| < ∞

}
,

Q :=

{
p = (pk) ∈ ω : there exists a B > 1 ∋

∑
k

B−1/pk < ∞

}
,

V :=
∩
B>1

a ∈ ω :
∞∑
k=1

|ak|
k−1∑
j=1

B1/pj converges and
n∑

k=1

B1/pk |Gk| < ∞

 ,

where Gk =
∞∑

v=k+1

av for all k ∈ N.

Theorem 5.1. Let infk∈N pk = h and supk∈N pk = H. Then, the following statements hold:

(i) [58, Theorem 7] The dual space of ℓ(p) was shown in Simons [58] to be ℓ∞(p) when 0 < pk ≤ 1.

(ii) [35, Theorem 6] Let 0 < h ≤ pk ≤ 1 for all k ∈ N. Then, the set K(p) is the dual space of ω(p).

(iii) [35, Remark of Theorem 6] f(x) =
∑
k

akxk defines an element of ω∗
0(p) without restriction

0 < h ≤ pk, where x ∈ ω0(p) and a ∈ K(p).

(iv) [36, Theorem 3] Let p ∈ Q. Then, ω∗
0(p) is S(p).

(v) [36, Theorem 4] Let 0 < h ≤ H < ∞ for all k ∈ N. Then, ℓ∗(p) is ℓ(q), where 1/pk + 1/qk = 1

for all k ∈ N.
(vi) [36, Note of Theorem 4] c∗0(p) = ℓ1 when h > 0 and c∗0(p) = ℓ∞(p) when p ∈ Q.

(vii) [38, Theorem 1] Let 1 < pk ≤ H for all k ∈ N. Then, {ℓ(p)}β = M(p).

(viii) [38, Theorem 2] Let 1 < pk ≤ H for all k ∈ N. Then, ℓ(p)∗ is isomorphic to M(p).

(ix) [38, Theorem 3] If 1 < h ≤ H < ∞ for all k ∈ N, then ℓ(p) and M(p) are linearly homeomorphic.

(x) [38, Theorem 4] If 1 < pk ≤ H < ∞ for all k ∈ N and ℓ(q) has its natural paranorm topology,

then ℓ(p)∗ is linearly homeomorphic to ℓ(q), where 1/pk + 1/qk = 1 for all k ∈ N.
(xi) [38, Theorem 6] Let pk > 0 for all k ∈ N. Then, {c0(p)}β = M0(p) when H < ∞, c∗0(p) is

isomorphic to M0(p) and when in addition, h > 0, c∗0(p) is linearly isomorphic to ℓ1.

(xii) [34, Theorem 2] Let pk > 0 for all k ∈ N. Then, {ℓ∞(p)}β = M∞(p).

(xiii) [34, Theorem 4] Let 0 < pk ≤ 1 for all k ∈ N. Then, {ω(p)}β = L(p).
(xiv) [33, Theorem 1] For every (pk), {c(p)}β = {c0(p)}β ∩ cs.

(xv) [33, Theorem 2] For every (pk), {c0(p)}ββ =
∩

B>1

{
a ∈ ω : supk |ak|B1/pk < ∞

}
.

(xvi) [33, Theorem 3] For every (pk), {ℓ∞(p)}ββ =
∪

B>1

{
a ∈ ω : supk |ak|B−1/pk < ∞

}
.

(xvii) [33, Theorem 6] The following statements are equivalent:

(1) h > 0.

(2) {ℓ∞(p)}β = ℓ1.

(3) {ℓ∞(p)}ββ = ℓ∞.

(xviii) [33, Theorem 7] The following statements are equivalent:

(1) {c(p)}β = ℓ∞.

(2) h > 0.

(3) c0 ⊂ c0(p).

Theorem 5.2. The following statements hold:

(i) [33, Theorem 4(i)] Let pk > 1 for all k ∈ N. Then, ℓ(p) is perfect if and only if p ∈ ℓ∞.

(ii) [33, Theorem 4(ii)] Let 0 < pk ≤ 1 for all k ∈ N. Then, ℓ(p) is perfect if and only if ℓ(p) = ℓ1.

(iii) ([33, Theorem 5] and [1, Theorem 2.3]) ℓ∞(p) is perfect if and only if p ∈ ℓ∞.

(iv) [33, Theorem 8] c0(p) is perfect if and only if p ∈ c0.

Theorem 5.3. For every sequence (pk), Ahmad and Mursaleen [1] gave the following results:

(i) [1, Theorem 2.1] {∆ℓ∞(p)}α =
∩

B>1

{
a ∈ ω :

∑
k

k|ak|B1/pk < ∞
}
.

(ii) [1, Theorem 2.2] {∆ℓ∞(p)}αα =
∪

B>1

{
a ∈ ω : supk(k

−1|ak|)B−1/pk < ∞
}
.
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(iii) [1, Remark of Theorem 2.2] (pk), {∆c0(p)}αα =
∩

B>1

{
a ∈ ω : supk(k

−1|ak|)B1/pk < ∞
}
.

Theorem 5.4. For every strictly positive sequence (pk) and for every u ∈ U , Malkowsky [44], Asma and

Çolak [7] and Başar and Altay [16] gave the following results:

(i) ([44, Theorem 2.1(a)] and [22, Theorem 1]) {∆ℓ∞(p)}α =
∩

B>1

{
a ∈ ω :

∞∑
k=1

|ak|
k−1∑
j=1

B1/pj < ∞

}
.

(ii) [44, Theorem 2.1(b)] {∆ℓ∞(p)}ββ =
∪

B>1

a ∈ ω : supk≥2 |ak|

[
k−1∑
j=1

B1/pj

]−1

< ∞

.

(iii) [44, Theorem 2.1(c)] {∆c0(p)}α = D0 =
∪

B>1

{
a ∈ ω :

∞∑
k=1

|ak|
k−1∑
j=1

B−1/pj < ∞

}
.

(iv) [44, Theorem 2.1(d)] {∆c0(p)}αα =
∩

B>1

a ∈ ω : supk≥2 |ak|

[
k−1∑
j=1

B−1/pj

]−1

< ∞

.

(v) [44, Theorem 2.2(a)] {∆c(p)}α = D0 ∩
{
a ∈ ω :

∞∑
k=1

k|ak| < ∞
}
.

(vi) [44, Theorem 2.2(b)] {∆ℓ∞(p)}β = V.

(vii) [7, Theorem 2.1(i)] {ℓ∞(u,∆, p)}α =
∩

B>1

{
a ∈ ω :

∑
k

|ak|
k−1∑
j=1

B1/pj/uj < ∞

}
.

(viii) [7, Theorem 2.1(ii)] {c0(u,∆, p)}α = D =
∪

B>1

{
a ∈ ω :

∑
k

|ak|
k−1∑
j=1

B1/pj/uj < ∞

}
.

(ix) [7, Theorem 2.1(iii)] {c(u,∆, p)}α = D ∪

{
a ∈ ω :

∑
k

|ak|
k−1∑
j=1

1/uj < ∞

}
.

(x) [7, Theorem 2.4] {ℓ∞(u,∆, p)}β = V with Rk = 1
uk

∞∑
v=k+1

av for all k ∈ N instead of Gk.

(xi) [16, Theorem 2.3] {bs(p)}α = M∞(p) ∩
∩

B>1

{
a ∈ ω :

∑
k

|∆ak|B1/pk < ∞
}
.

(xii) [16, Theorem 2.3] {bs(p)}β =
∩

B>1

{
a ∈ ω :

∑
k

|∆ak|B1/pk < ∞ and
{
akB

1/pk
}
∈ c0

}
.

(xiii) [16, Theorem 2.3] {bs(p)}γ =
∩

B>1

{
a ∈ ω :

∑
k

|∆ak|B1/pk < ∞ and
{
akB

1/pk
}
∈ ℓ∞

}
.

Lemma 5.1. [6, Theorem 3.1] Let E = (enk) be defined via a sequence a = (ak) ∈ ω and the inverse

matrix V = (vnk) of the triangle matrix Q = (qnk) by

enk =


n∑

j=k

ajvjk , 0 ≤ k ≤ n,

0 , otherwise

for all k ∈ N. Then,

{λQ}β = {a = (ak) ∈ ω : E ∈ (λ : c)} ,
{λQ}γ = {a = (ak) ∈ ω : E ∈ (λ : ℓ∞)} .

Following Altay and Başar [6], we can say that

{λQ}α = {a = (ak) ∈ ω : E ∈ (λ : ℓ1)} ,

under same conditions.

Define the inverses of the matrices given in (9), respectively, {Rt}−1
= (rnk), {N t}−1

= (unk),

{G(u, ν)}−1
= (hnk), {B(r, s)}−1

= (bnk), {B(r̃, s̃)}−1
= (ςnk), {Ar}−1

= (ζnk), F
−1 = (znk), {Au}−1

=
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(ϱnk), {B(r, s, t)}−1
= (ξnk) and {Er}−1

= (δnk) by

rnk =

{
(−1)n−kTk

tn
, n− 1 ≤ k ≤ n,

0 , otherwise
, unk =

{
(−1)n−kDn−kTk , 0 ≤ k ≤ n,

0 , k > n

hnk =

{
(−1)n−k

ukνn
, n− 1 ≤ k ≤ n,

0 , otherwise
, bnk =

{
1
r

(
− s

r

)n−k
, 0 ≤ k ≤ n,

0 , otherwise
,

ςnk =

{
(−1)n−k

rn

∏n−1
i=k

si
ri

, 0 ≤ k ≤ n,

0 , otherwise
, ζnk =

{
(−1)n−k (1+k)

(1+rn)un
, n− 1 ≤ k ≤ n,

0 , otherwise

ϱnk =

{
1/uk , 0 ≤ k ≤ n,

0 , otherwise
, znk =

{
f2
n+1

fkfk+1
, 0 ≤ k ≤ n,

0 , otherwise

ξnk =

 1
r

n−k∑
j=0

(
−s+

√
s2−4tr
2r

)n−k−j (
−s−

√
s2−4tr
2r

)j
, 0 ≤ k ≤ n,

0 , otherwise

δnk =

{ (
n
k

)
(r − 1)n−kr−k , 0 ≤ k ≤ n

0 , otherwise

for all k, n ∈ N, where D0 = 1 and

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 1 0 0 . . . 0

t2 t1 1 0 . . . 0

t3 t2 t1 1 . . . 0
...

...
...

...
. . .

...

tn−1 tn−2 tn−3 tn−4 . . . 1

tn tn−1 tn−2 tn−3 . . . t1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

for n ∈ {1, 2, 3, . . .}. Also, ∆−1 = (snk) is as in (3).

Define the sets d1(p)− d14(p) as:

d1(p) :=
∪

B>1

{
a ∈ ω : sup

N∈F

∑
k

∣∣∣∣ ∑
n∈N

anvnkB
−1

∣∣∣∣qk < ∞
}
,

d2(p) :=
∪

B>1

{
a ∈ ω : sup

n∈N

∑
k

∣∣∣∣∣ n∑
j=k

ajvjkB
−1

∣∣∣∣∣
qk

< ∞

}
,

d3(p) :=

{
a) ∈ ω : sup

N∈F
sup
k∈N

∣∣∣∣ ∑
n∈N

anvnk

∣∣∣∣pk

< ∞
}
,

d4(p) :=

{
a ∈ ω : sup

k,n∈N

∣∣∣∣∣ n∑
j=k

ajvjk

∣∣∣∣∣
pk

< ∞

}
,

d5(p) :=
∩

B>1

{
a ∈ ω : sup

N∈F

∑
k

∣∣∣∣ ∑
n∈N

anvnkB
1/pk

∣∣∣∣ < ∞
}
,

d6(p) :=
∩

B>1

{
a ∈ ω : sup

n∈N

∑
k

∣∣∣∣∣ n∑
j=k

ajvjk

∣∣∣∣∣B1/pk < ∞

}
,

d7(p) :=
∪

B>1

{
a ∈ ω : sup

N∈F

∑
n

∣∣∣∣ ∑
k∈N

anvnkB
−1/pk

∣∣∣∣ < ∞
}
,

d8(p) :=

{
a ∈ ω :

∑
n

∣∣∣∣∑
k

anvnk

∣∣∣∣ < ∞
}
,

d9(p) :=
∪

B>1

{
a ∈ ω : sup

n∈N

∑
k

∣∣∣∣∣ n∑
j=k

ajvjk

∣∣∣∣∣B−1/pk < ∞

}
,

d10(p) :=
∩

B>1

{
a ∈ ω : ∃(αk) ∈ ω ∋ lim

n→∞

∑
k

∣∣∣∣∣ n∑
j=k

ajvjk − αk

∣∣∣∣∣B1/pk = 0

}
,
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d11(p) :=
∪

B>1

{
a ∈ ω : ∃(αk) ∈ ω ∋ sup

n∈N

∑
k

∣∣∣∣∣ n∑
j=k

ajvjk − αk

∣∣∣∣∣B−1/pk < ∞

}
,

d12(p) :=

{
a ∈ ω : lim

n→∞

∑
k

∣∣∣∣∣ n∑
j=k

ajvjk − α

∣∣∣∣∣ = 0

}
,

d13(p) :=

{
a ∈ ω : ∃(αk) ∈ ω ∋ lim

n→∞

∣∣∣∣∣ n∑
j=k

ajvjk − αk

∣∣∣∣∣ = 0

}
,

d14(p) :=

{
a ∈ ω : sup

n∈N

∑
k

∣∣∣∣∣ n∑
j=k

ajvjk

∣∣∣∣∣ < ∞

}
.

Theorem 5.5. Taking rnk, ζnk, ϱnk, δnk, ξnk, bnk, ςnk, znk and unk instead of vnk, respectively, Altay

and Başar [2, 4], Aydn and Başar [9, 10], Başar et al. [18], Kara et al. [30], Başar and Çakmak [19],

Aydın and Altay [8] and Aydn and Başar [13], Nergiz and Başar [56] and Özger and Başar [59], Çapan

and Başar [23], Yeşilkayagil and Başar [60, 61] obtained the following results:

(i) [2, Theorem 2.7] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then,

(a) {rt(p)}α = d1(p).

(b) {rt(p)}β = {rt(p)}γ = d2(p)
∩

∪
B>1

{
a ∈ ω :

{(
akTkB

−1/tk
)qk} ∈ ℓ∞

}
.

(ii) [2, Theorem 2.8] Let 0 < pk ≤ 1 for all k ∈ N. Then,

(a) {rt(p)}α = d3(p).

(b) {rt(p)}β = {rt(p)}γ = {a ∈ ω : d4(p) ∩ {(akTk/tk)
pk} ∈ ℓ∞}.

(iii) [4, Theorem 2.6] {rt∞(p)}α = d5(p), {rt∞(p)}β = d6(p)
∩
∩B>1

{
a ∈ ω :

{
akTkB

1/pk/tk
}
∈ c0

}
and {rt∞(p)}γ = d6(p)

∩
∩B>1

{
a ∈ ω :

{
∆(ak/tk)TkB

1/pk
}
∈ ℓ∞

}
.

(iv) [4, Theorem 2.6] {rtc(p)}
α
= d7(p) ∩ d8(p), {rtc(p)}

β
= d9(p) ∩ cs and {rtc(p)}

γ
= d9(p) ∩ bs.

(v) [4, Theorem 2.6] {rt0(p)}
α
= d7(p) and {rt0(p)}

β
= {rtc(p)}

γ
= d9(p).

(vi) [9, Theorem 4.5] {ar0(p)}β = {ar0(p)}γ = d9(p)
∩

∪
B>1

{
a ∈ ω :

{
k+1

(1+rk)uk
akB

−1/pk

}
k∈N

∈ ℓ∞

}
and {ar0(p)}α = d7(p).

(vii) [9, Theorem 4.5] {arc(p)}α = d7(p)∩d3(p), {arc(p)}β = {ar0(p)}β ∩
{
a ∈ ω :

{
ak

(1+rk)uk

}
k∈N

∈ cs

}
and {arc(p)}γ = {ar0(p)}γ ∩

{
a ∈ ω :

{
ak

(1+rk)uk

}
k∈N

∈ bs

}
.

(viii) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then,

(a) [10, Theorem 3.4(ii)] {ar(u, p)}α = d2(p).

(b) [10, Theorem 3.5(ii)] {ar(u, p)}β = d2(p)
∩

∪
B>1

{
a ∈ ω :

{(
k+1

(1+rk)uk
akB

−1
)qk}

k∈N
∈ ℓ∞

}
.

(c) [10, Theorem 3.6(ii)] {ar(u, p)}γ = {ar(u, p)}β.
(ix) Let 0 < pk ≤ 1 for all k ∈ N. Then,

(a) [10, Theorem 3.4(i)] {ar(u, p)}α = d3(p).

(b) [10, Theorem 3.5(i)] {ar(u, p)}β = d4(p)
∩{

a ∈ ω :
{(

k+1
(1+rk)uk

ak

)pk
}
k∈N

∈ ℓ∞

}
.

(c) [10, Theorem 3.6(i)] {ar(u, p)}γ = {ar(u, p)}β.
(x) [18, Theorems 3.4-3.5(i)] {bv(u, p)}α = d3(p), {bv(u, p)}β = d4(p) ∩ cs, {bv(u, p)}γ = d4(p),

where 0 < pk ≤ 1 for all k ∈ N.
(xi) [18, Theorems 3.4-3.5(ii)] {bv(u, p)}α = d1(p), {bv(u, p)}β = d2(p) ∩ cs, {bv(u, p)}γ = d2(p),

where 1 < pk ≤ H < ∞ for all k ∈ N.
(xii) [18, Theorem 3.6] {bv∞(u, p)}α = d5(p), {bv∞(u, p)}β = d6(p) ∩ d10(p), {bv∞(u, p)}γ = d6(p).

(xiii) [30, Theorem 3] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, {er(p)}α = d1(p).

(xiv) [30, Theorem 4] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, {er(p)}γ = d2(p) and {er(p)}β =

d2(p)
∩{

a ∈ ω :
∞∑
j=k

(
j
k

)
(r − 1)j−kr−jaj exists for each k ∈ N

}
.
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(xv) [30, Theorem 5] Let 0 < pk ≤ 1 for all k ∈ N. Then, {er(p)}α = d3(p), {er(p)}γ = d4(p) and

{er(p)}β = d4(p)
∩{

a ∈ ω :
∞∑
j=k

(
j
k

)
(r − 1)j−kr−jaj exists for each k ∈ N

}
.

(xvi) [19, Theorems 2.9-2.11] {ℓ∞(B, p)}α = d5(p), {ℓ∞(B, p)}β = d6(p)∩d10(p), {ℓ∞(B, p)}γ = d6(p).

(xvii) [8, Corollary 2.11] {ℓ̂∞(p)}β = d6(p) ∩ d10(p), {ℓ̂∞(p)}γ = d6(p), {ĉ0(p)}β = d9(p) ∩ d11(p) ∩
d13(p), {ĉ0(p)}γ = d9(p), {ĉ(p)}β = d9(p) ∩ d11(p) ∩ d12(p) ∩ d13(p), {ĉ(p)}γ = d14(p).

(xviii) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then,

(a) [13, Theorem 3.4] {ℓ̂(p)}α = d1(p).

(b) [13, Theorem 3.5] {ℓ̂(p)}β = d2(p)
∩

∪
B>1

{
a ∈ ω :

{
n∑

j=k

(
− s

r

)n−k
aj

}
n∈N

∈ c

}
.

(c) [13, Theorem 3.6] {ℓ̂(p)}γ = d2(p).

(xix) Let 0 < pk ≤ 1 for all k ∈ N. Then,

(a) [13, Theorem 3.4] {ℓ̂(p)}α = d3(p).

(b) [13, Theorem 3.5] {ℓ̂(p)}β =

{
a ∈ ω : d4(p) ∩

{
n∑

j=k

(
− s

r

)n−k
aj

}
n∈N

∈ c

}
.

(c) [13, Theorem 3.6] {ℓ̂(p)}γ = d4(p).

(xx) [56, Theorems 10-12] Let 0 < pk ≤ 1 for all k ∈ N. Then, {ℓ(B̃, p)}α = d3(p), {ℓ(B̃, p)}γ = d2(p),

{ℓ(B̃, p)}β = d4(p) ∩ Z, where Z =

{
a ∈ ω :

∞∑
i=k

(−1)i−k

ri

∏i−1
j=k

sj
rj

< ∞
}
.

(xxi) [56, Theorems 10-12] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, {ℓ(B̃, p)}α = d1(p), {ℓ(B̃, p)}γ =

d2(p), {ℓ(B̃, p)}β = d2(p) ∩ Z.

(xxii) [59, Theorem 4.1] {c0(B̃, p)}α = d7(p), {c0(B̃, p)}γ = d9(p), {c0(B̃, p)}β = d9(p) ∩ d11(p),

{c(B̃, p)}α = d7(p)∩d8(p), {c(B̃, p)}β = d9(p)∩d11(p)∩cs, {c(B̃, p)}γ = d9(p)∩bs, {ℓ∞(B̃, p)}α =

d5(p), {ℓ∞(B̃, p)}β = d6(p) ∩ cs, {ℓ∞(B̃, p)}γ = d6(p).

(xxiii) [23, Theorems 3.4-3.6] Let 0 < pk ≤ 1 for all k ∈ N. Then, {ℓ(F, p)}α = d3(p), {ℓ(F, p)}γ =

d4(p), {ℓ(F, p)}β = d4(p) ∩ d13(p).

(xxiv) [23, Theorems 3.4-3.6] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, {ℓ(F, p)}α = d2(p), {ℓ(F, p)}γ =

d4(p), {ℓ(F, p)}β = d2(p) ∩ d13(p).

(xxv) [60, Theorem 8] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, {N t(p)}α = d1(p), {N t(p)}α}γ =

d2(p), {N t(p)}α}β = d2(p) ∩ cs.

(xxvi) [60, Theorem 9] Let 0 < pk ≤ 1 for all k ∈ N. Then, {N t(p)}α = d3(p), {N t(p)}γ = d4(p),

{N t(p)}β = d4(p) ∩ {a ∈ ω : {(anTn)
pk} ∈ ℓ∞}.

(xxvii) [61, Theorem 3.4] {ℓ∞(N t, p)}α = d5(p), {ℓ∞(N t, p)}γ = d6(p), {ℓ∞(N t, p)}β = d6(p) ∩ d10(p),

{c0(N t, p)}α = d7(p), {c0(N t, p)}γ = d9(p), {c0(N t, p)}β = d9(p) ∩ d11(p) ∩ cs, {c(N t, p)}α =

d7(p) ∩ d8(p), {c(N t, p)}γ = d9(p) ∩ d14(p), {c(N t, p)}β = d9(p) ∩ d11(p) ∩ d14(p) ∩ cs.

It is known that the matrix domain λA of a sequence space λ has a basis if and only if λ has a basis

whenever A = (ank) is triangle, [29]. Let λ(p) be any Maddox’s space, A = (ank) be an infinite matrix

and denote A−1 = (a−1
nk ) with the inverse of A, where λ ∈ {ℓp, c0, c}. Then, the following Theorem holds:

Theorem 5.6. Define the sequence b(k) = {b(k)n }n∈N of the elements of the space (λ(p))A for every fixed

k ∈ N by

b(k)n = a−1
nk . (13)

Then,

(i) the sequence {b(k)}k∈N is a basis for the space (λ(p))A and any x ∈ (λ(p))A has a unique repre-

sentation of the form

x =
∑
k

αkb
(k),

where αk = (Ax)k for all k ∈ N, 0 < pk ≤ H < ∞ and λ ∈ {ℓp, c0}.
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(ii) the set {ϑ, b(k)}k∈N is a basis for the space (c(p))A and any x ∈ (c(p))A has a unique represen-

tation of the form

x = ℓϑ+
∑
k

[αk − ℓϑk]b
(k),

where ϑ = (ϑk) with ϑk = (A−1e)k for all k ∈ N and ℓ = limk→∞(Ax)k.

Using Theorem 5.6 and taking rnk, hnk, ζnk, ϱnk, δnk, ξnk, bnk, ςnk, znk and unk instead of ank in

(13), respectively, Altay and Başar [2, 4] ,Altay and Başar [3, 5], Aydn and Başar [9, 10], Başar et al.

[18], Kara et al. [30], Başar and Çakmak [19], Aydın and Altay [8] and Aydn and Başar [13], Nergiz and

Başar [56] and Özger and Başar [59], Çapan and Başar [23], Yeşilkayagil and Başar [60, 61] obtained the

basis of the spaces rt(p), rt0(p), r
t
c(p); c0(u, ν, p), c(u, ν, p), ℓ(u, ν, p); a

r(u, p), ar0(u, p), a
r
c(u, p); bv(u, p);

er(p); c0(B, p), c(B, p); ℓ̂(p), ĉ0(p), ĉ(p); ℓ(B̃, p), c0(B̃, p), c(B̃, p); ℓ(F, p); N t(p), ℓ∞(N t, p), respectively.

6. Matrix transformations

In this section, we give a list of characterizations of matrix transformations between Maddox’s sequence

spaces.

Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix of complex numbers ank,

where k, n ∈ N. Then, we say that A defines a matrix transformation from λ into µ and we denote it by

writing A : λ → µ, if for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A-transform of x,

is in µ; where

(Ax)n =
∑
k

ankxk for each n ∈ N. (14)

By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus, A ∈ (λ : µ) if and only if

the series on the right side of (14) converges for each n ∈ N and every x ∈ λ, and we have Ax ∈ µ for all

x ∈ λ.

Let B and M denote the natural numbers and define the sets K1 and K2 by K1 = {k ∈ N : pk ≤ 1}
and K2 = {k ∈ N : pk > 1}. We suppose that p = (pk), q = (qk) ∈ ℓ∞ and qk > 0 with 1/pk + 1/qk = 1

for all k ∈ N. Consider the following conditions:

sup
n∈N

(
sup
k∈N

|ank|B−1/pk

)qn

< ∞ for some B > 1, (15)

lim
B→∞

lim sup
n→∞

(
sup
k∈N

|ank|B−1/pk

)qn

= 0, (16)

∃(αk) ∈ ω such that lim
B→∞

lim sup
n→∞

(
sup
k∈N

|ank − αk|B−1/pk

)qn

= 0, (17)

sup
n∈N

sup
k∈N

|ank|B−1/pk < ∞ for some B > 1, (18)

sup
n∈N

(∑
k

|ank|B1/pk

)qn

< ∞ for all B > 1, (19)

sup
n∈N

∑
k

|ank|B1/pk < ∞ for all B > 1, (20)

∃(αk) ∈ ω such that lim
n→∞

(∑
k

|ank − αk|B1/pk

)qn

= 0 for all B > 1, (21)
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lim
n→∞

(∑
k

|ank|B1/pk

)qn

= 0 for all B > 1, (22)

qn ≥ 1 for all n and for all B > 1 sup
N∈F

∑
n

∣∣∣∣∣∑
k∈N

ankB
1/pk

∣∣∣∣∣
qn

< ∞, (23)

∃B > 1 such that sup
n∈N

(∑
k

|ank|B−1/pk

)qn

< ∞, (24)

∃B > 1 such that sup
n∈N

∑
k

|ank|B−1/pk < ∞, (25)

∀M, ∃B > 1 and ∃(αk) ∈ ω such that sup
n∈N

∑
k∈K2

|ank − αk|M1/qnB−1/pk < ∞, (26)

∃(αk) ∈ ω such that lim
n→∞

|ank − αk|qn = 0 for all k ∈ N, (27)

∀M, ∃B > 1 such that sup
n∈N

∑
k

|ank|M1/qnB−1/pk < ∞, (28)

lim
n→∞

|ank|qn = 0 for all k ∈ N, (29)

∃B > 1 such that sup
N∈F

∑
n

∣∣∣∣∣∑
k∈N

ankB
−1/pk

∣∣∣∣∣
qn

< ∞ for all qn ≥ 1, (30)

sup
n∈N

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

< ∞, (31)

∃α ∈ C such that lim
n→∞

∣∣∣∣∣∑
k

ank − α

∣∣∣∣∣
qn

= 0, (32)

lim
n→∞

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

= 0, (33)

∑
n

∣∣∣∣∣∑
k

ank

∣∣∣∣∣
qn

< ∞ for all qn ≥ 1, (34)

∃B > 1 such that sup
N∈F

∑
k∈K2

∣∣∣∣∣∑
n∈N

ankB
−1

∣∣∣∣∣
qk

< ∞, (35)

sup
N∈F

sup
k∈K1

∣∣∣∣∣∑
n∈N

ank

∣∣∣∣∣
pk

< ∞, (36)

∃B > 1 such that sup
n∈N

∑
k∈K2

∣∣ankB−1
∣∣qk < ∞, (37)

sup
n∈N

sup
k∈K1

|ank|pk < ∞, (38)∑
k

|ank|B1/pk < ∞ converges uniformly in n for all B > 1, (39)

∃(αk) ∈ ω such that lim
n→∞

ank = αk for all k ∈ N, (40)
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lim
n→∞

ank = 0 for all k ∈ N, (41)

lim
k→∞

ankB
1/pk = 0 for all n ∈ N, (42)

lim
n→∞

∑
k

ank = α exists , (43)

sup
n∈N

sup
k∈K1

|ankB1/qn |pk < ∞, (44)

∀M, ∃B > 1 such that sup
n∈N

∑
k∈K2

|ankM1/qnB−1|qk < ∞, (45)

∃(αk) ∈ ω such that sup
n∈N

sup
k∈K1

(|ank − αk|B1/qn)pk < ∞ for all B > 1, (46)

∀M, ∃B > 1 and ∃(αk) ∈ ω such that sup
n∈N

∑
k∈K2

(|ank − αk|M1/qnB−1)qk < ∞, (47)

sup
n∈N

sup
k∈K1

|ankB−1/qn |pk < ∞, (48)

sup
n∈N

∑
k∈K2

|ankB−1/qn |qk < ∞. (49)

Lemma 6.1. Let A = (ank) be an infinite matrix and 0 < pk ≤ 1 for all k ∈ N and q = (qk) be

bounded. Then, the following statements hold:

(i) [42, Theorem 5(i)] A ∈ (ℓ(p) : ℓ∞(q)) if and only if (15) holds.

(ii) [42, Theorem 5(ii)] A ∈ (ℓ(p) : c0(q)) if and only if (16) and (29) hold.

(iii) [42, Theorem 5(iii)] A ∈ (ℓ(p) : c(q)) if and only if (17), (18) and (27) hold.

(iv) [42, Theorem 6] Let q = (qk) ∈ c0. Then, A ∈ (ℓ(p) : c0(q)) if and only if (17) holds.

Lemma 6.2. Let A = (ank) be an infinite matrix and 1 < pk ≤ H for all k ∈ N and 1/pk + 1/sk = 1

and let q = (qk) be bounded. Then, the following statements hold:

(i) [42, Theorem 7] A ∈ (ℓ(p) : ℓ∞(q)) if and only if

sup
n∈N

∑
k

|ank|skB−sk/qn < ∞ for some B > 1.

(ii) [42, Theorem 8] A ∈ (ℓ(p) : c0(q)) if and only if (29) holds and for every D ≥ 1

lim
B→∞

lim sup
n→∞

(∑
k

|ank|skDsk/qnB−sk

)qn

= 0 for some B > 1.

(iii) [42, Theorem 9] A ∈ (ℓ(p) : c(q)) if and only if (27) holds and

sup
n∈N

∑
k

|ank|skB−sk < ∞ for some B > 1,

∃(αk) ∈ ω such that lim
B→∞

lim sup
n→∞

(∑
k

|ank − αk|skDsk/qnB−sk

)qn

= 0 for all D ≥ 1.

Following Maddox and Willey [42], Grosse-Erdmann [26] redefined the matrix classes (ℓ(p) : λ(q)),

where λ ∈ {ℓ∞, c0, c) and gave the following results:

Lemma 6.3. Let A = (ank) be an infinite matrix. Then, the following statements hold:

(i) [26, Theorem 5.1.15] A ∈ (ℓ∞(p) : ℓ∞(q)) if and only if (19) holds.

(ii) [26, Theorem 5.1.11] A ∈ (ℓ∞(p) : c(q)) if and only if (20) and (21) hold.

(iii) [26, Theorem 5.1.7] A ∈ (ℓ∞(p) : c0(q)) if and only if (22) holds.

(iv) [26, Theorem 5.1.3] A ∈ (ℓ∞(p) : ℓ(q)) if and only if (23) holds.

(v) [26, Theorem 5.1.13] A ∈ (c0(p) : ℓ∞(q)) if and only if (24) holds.

(vi) [26, Theorem 5.1.9] A ∈ (c0(p) : c(q)) if and only if (25)-(27) hold.

(vii) [26, Theorem 5.1.5] A ∈ (c0(p) : c0(q)) if and only if (28) and (29) hold.

(viii) [26, Theorem 5.1.1] A ∈ (c0(p) : ℓ(q)) if and only if (30) holds.
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(ix) [26, Theorem 5.1.14] A ∈ (c(p) : ℓ∞(q)) if and only if (24) and (31) hold.

(xx) [26, Theorem 5.1.10] A ∈ (c(p) : c(q)) if and only if (25)-(27) and (32) hold.

(xi) [26, Theorem 5.1.6] A ∈ (c(p) : c0(q)) if and only if (28), (29) and (33) hold.

(xii) [26, Theorem 5.1.2] A ∈ (c(p) : ℓ(q)) if and only if (30) and (34) hold.

(xiii) [26, Theorem 5.1.4] A ∈ (ℓ(p) : c0(q)) if and only if (29), (44) and (45) hold.

(xiv) [26, Theorem 5.1.8] A ∈ (ℓ(p) : c(q)) if and only if (27), (37), (38), (46) and (47) hold.

(xv) [26, Theorem 5.1.8] A ∈ (ℓ(p) : ℓ∞(q)) if and only if (48) and (49) hold.

Lemma 6.4. The following statements hold:

(i) [26, Theorem 5.1.0 with qn = 1] A ∈ (ℓ(p) : ℓ1) if and only if (35) holds, where 1 < pk ≤ H < ∞
for all k ∈ N.

(ii) [26, Theorem 5.1.0] A ∈ (ℓ(p) : ℓ1) if and only if if and only if (36) holds, where 0 < pk ≤ 1 for

all k ∈ N.
(iii) ([34, Theorem 1(i)] and [26, Proposition 3.2(i)]) A ∈ (ℓ(p) : ℓ∞) if and only if (37) holds, where

1 < pk ≤ H < ∞ for all k ∈ N.
(iv) ([34, Theorem 1(ii)] and [26, Proposition 3.2(i)]) A ∈ (ℓ(p) : ℓ∞) if and only if (38) holds, where

0 < pk ≤ 1 for all k ∈ N.
(v) [34, Corollary of Theorem 1] A ∈ (ℓ(p) : c) if and only if (37), (38) and (40) hold, where

0 < pk ≤ H for all k ∈ N.
(vi) [34, Theorem 3] A ∈ (ℓ∞(p) : ℓ∞) if and only if (20) holds.

(vii) [34, Corollary of Theorem 3] A ∈ (ℓ∞(p) : c) if and only if (39) and (40) hold, where 0 < pk ≤ H

for all k ∈ N.
(viii) [33, Theorem 9] A ∈ (c(p) : c) if and only if (25), (40) and (43) hold, where p ∈ ℓ∞.

(ix) [33, Theorem 9] A ∈ (c0(p) : c) if and only if (25) and (40) hold, where p ∈ ℓ∞.

(x) [34, Theorem 5] Let 0 < pk ≤ 1. Then, A ∈ (ω(p) : c) if and only if (42) and (43) hold and

∃B > 1 such that sup
n∈N

∑
r

max
r∈N

(
(2rB−1)1/pk |ank|

)
< ∞.

Theorem 6.1. Let 0 < pk ≤ supk pk < ∞ for all k ∈ N. Then, Nanda [53, 54, 55] gave the following

results:

(i) A ∈ (c0(p) : f0(p)) if and only if

∃B > 1 ∋ sup
m∈N

(∑
k

|a(n, k,m)|B−1/pk

)pm

< ∞ for all n ∈ N, (50)

∃αk ∈ C for all k ∈ N ∋ lim
m→∞

|a(n, k,m)|pm = αk uniformly in n.

(ii) A ∈ (c(p) : f) if and only if

∃B > 1 ∋ sup
m∈N

∑
k

|a(n, k,m)|B−1/pk < ∞ for all n ∈ N, (51)

∃αk ∈ C for all k ∈ N ∋ lim
m→∞

a(n, k,m) = αk uniformly in n, (52)

∃α ∈ C ∋ lim
m→∞

∑
k

a(n, k,m) = α uniformly in n. (53)

(iii) A ∈ (ℓ∞(p) : f) if and only if (52) holds, and

∃B > 1 ∋ lim
m→∞

∑
k

|a(n, k,m)− αk|B1/pk = 0 uniformly in n (54)

sup
m∈N

∑
k

|a(n, k,m)| < ∞.
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(iv) A ∈ (ℓ(p) : f) if and only if (52) holds and

∃B > 1 ∋ sup
m∈N

∑
k

|a(n, k,m)|qkB−qk < ∞, if pk ≥ 1, (55)

sup
m,k∈N

|a(n, k,m)|pk < ∞, if 0 < pk ≤ 1. (56)

(v) A ∈ (ℓ(p) : f0) if and only if (52) is satisfied with αk = 0 for all k ∈ N and (55), (56) hold.

(vi) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ω(p) : f) if and only if (52) and (53) are satisfied and

sup
m∈N

∑
r

max
r∈N

(22B−1)1/pk |a(n, k,m)| < ∞.

(vii) A ∈ (ℓ∞(p) : f̂) if and only if

sup
m,n∈N

∑
k

|a(n, k,m)|B1/pk < ∞ for all B > 1.

(viii) A ∈ (c0(p) : f̂(p)) if and only if (50) holds,

where

a(n, k,m) =
1

m+ 1

m∑
i=0

an+i,k

for all k,m, n ∈ N.

Theorem 6.2. Let A = (ank) be an infinite matrix, let r = (rn) be bounded and denote a(n, k) =
n∑

i=0

aik

for all n, k ∈ N. Başar [14] gave the following matrix classes:

(i) [14, Theorem 1(i)] Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ(p) : f̂(r)) if and only if

∃B > 1 such that sup
n,k,m∈N

(|a(n, k,m)|B−1/pk)rn < ∞.

(ii) [14, Theorem 1(ii)] Let 1 < pk < ∞ for all k ∈ N and 1/pk + 1/qk = 1. Then, A ∈ (ℓ(p) : f̂(r))

if and only if

∃B > 1 such that sup
n,m∈N

∑
k

|a(n, k,m)|qkB−qk/rn < ∞.

(iii) [14, Theorem 2(i)] Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ(p) : b̂s(r)) if and only if

∃B > 1 such that sup
n,k,m∈N

(
1

m+ 1

∣∣∣∣∣
m∑
i=0

a(n+ i, k)

∣∣∣∣∣B−1/pk

)rn

< ∞.

(iv) [14, Theorem 2(ii)] Let 1 < pk < ∞ for all k ∈ N and 1/pk + 1/qk = 1. Then, A ∈ (ℓ(p) : b̂s(r))

if and only if

∃B > 1 such that sup
n,m∈N

∑
k

∣∣∣∣∣ 1

m+ 1

m∑
i=0

a(n+ i, k)

∣∣∣∣∣
qk

B−qk/rn < ∞.

(v) [14, Theorem 4] A ∈ (c0(p) : f̂(r)) if and only if

∃B > 1 such that sup
n,m∈N

(∑
k

|a(n, k,m)|B−1/pk

)rn

< ∞.

(vi) [14, Theorem 5] A ∈ (c0(p) : b̂s(r)) if and only if

∃B > 1 such that sup
n,m∈N

(∑
k

∣∣∣∣∣ 1

m+ 1

m∑
i=0

a(n+ i, k)

∣∣∣∣∣B−1/pk

)rn

< ∞.
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(vii) [14, Theorem 5] A ∈ (c0(p) : bs(r)) if and only if

∃B > 1 such that sup
n∈N

(∑
k

|a(n, k)|B−1/pk

)rn

< ∞.

Theorem 6.3. Let A = (ank) be an infinite matrix. Başar and Altay [16] gave the following results:

(i) [16, Theorem 3.1] A ∈ (bs(p) : ℓ∞(q)) if and only if (19) holds with jnk = ∆ank instead of ank
and (42) is satisfied.

(ii) [16, Theorem 3.2] A ∈ (bs(p) : bs(q)) if and only if (19) and (42) hold with jnk = ∆a(n, k)

instead of ank, where a(n, k) =
n∑

i=0

aik.

(iii) [16, Corollary 3.3] A ∈ (bs(p) : ℓ∞) if and only if (42) is satisfied and (20) holds with jnk = ∆ank
instead of ank.

(iv) [16, Corollary 3.4] A ∈ (bs(p) : bs) if and only if (20) and (42) hold with jnk = ∆a(n, k) instead

of ank.

(v) [16, Theorem 3.5] A ∈ (bs(p) : f) if and only if if and only if (20) is satisfied with jnk = ∆ank
instead of ank, and (52) and (54) hold with ∆a(n, k,m) instead of a(n, k,m).

(vi) [16, Theorem 3.7] A ∈ (bs(p) : c) if and only if if and only if (39), (40) and (42) hold with

jnk = ∆ank instead of ank.

Lemma 6.5. [31, Theorem 4.1] Let λ be an FK−space, E = (enk) be triangle, V = (vnk) be its

inverse and µ be arbitrary subset of ω. Then, we have A ∈ (λE : µ) if and only if

Q(n) = (q
(n)
mk) ∈ (λ : c) for all n ∈ N

and

Q = (qnk) ∈ (λ : µ),

where

q
(n)
mk =


m∑

j=k

anjvjk , 0 ≤ k ≤ m,

0 , k > m.

and qmk =
∞∑
j=k

anjvjk, (57)

k,m, n ∈ N.

Theorem 6.4. Let pk > 0 for all k ∈ N. Then, Ahmad and Mursaleen [1] gave results:

(i) [1, Theorem 3.3] A ∈ (∆ℓ∞(p) : ℓ∞) if and only if (20) holds with qnk = k|ank| instead of ank.

(ii) [1, Theorem 3.4] A ∈ (∆ℓ∞(p) : c) if and only if (40) holds and (39) holds with qnk = k|ank|
instead of ank.

Using Lemma 6.5., we give following results:

Theorem 6.5. The following statements hold:

(i) [2, Theorem 3.1(i)] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (rt(p) : ℓ∞) if and only if

(1*)
{(

ank

qk
QkB

−1
)qk}

k∈N
∈ ℓ∞ for all n ∈ N.

(2*) (37) holds with qnk =
∞∑
j=k

anjrjk instead of ank.

(ii) [2, Theorem 3.1(ii)] Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (rt(p) : ℓ∞) if and only if

(3*) (38) holds with qnk =
∞∑
j=k

anjrjk instead of ank.

(iii) [2, Theorem 3.4] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (rt(p) : c) if and only if

(1*)-(3*) hold and there exists a sequence (αk) of scalars such that

(4*) lim
n→∞

∆
(

ank−αk

tk

)
Tk = 0 for all k ∈ N.

(iv) [2, Theorem 3.5] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (rt(p) : c0) if and only if

(1*)-(4*) hold.
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(v) [2, Theorem 3.2(i)] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (rt(p) : bs) if and only if (1*)

is satisfied with a(n, k) instead of ank and (37) holds with jnk = ∆
[
a(n,k)

qk

]
Qk instead of ank.

(vi) [2, Theorem 3.2(ii)] Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (rt(p) : bs) if and only if (38) holds

with jnk = ∆
[
a(n,k)

qk

]
Qk instead of ank.

(vii) [2, Theorem 3.4(i)] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (rt(p) : cs) if and only if

(37) and (38) are satisfied with jnk = ∆
[
a(n,k)

qk

]
Qk instead of ank and (1*) and (4*) hold with

a(n, k) instead of ank.

(viii) [2, Theorem 3.4(ii)] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (rt(p) : cs0) if and only if

(37) and (38) are satisfied with jnk = ∆
[
a(n,k)

qk

]
Qk instead of ank and (1*) and (4*) hold with

a(n, k) instead of ank and with αk = 0 for all k ∈ N.

(ix) [4, Theorem 4.3(i)] A ∈ (rt∞(p) : ℓ∞(q)) if and only if (19) holds with qnk =
∞∑
j=k

anjrjk instead

of ank and

(5*) (42) holds with rnk instead of ank.

(x) [4, Theorem 4.3(iv)] A ∈ (rt∞(p) : ℓ(q)) if and only if (5*) holds and (23) holds with qnk =
∞∑
j=k

anjrjk instead of ank.

(xi) [4, Theorem 4.3(vii)] A ∈ (rt∞(p) : c(q)) if and only if (5*) holds and (20)-(21) hold with

qnk =
∞∑
j=k

anjrjk instead of ank.

(xii) [4, Theorem 4.3(x)] A ∈ (rt∞(p) : c0(q)) if and only if (5*) holds and (21) holds with qnk =
∞∑
j=k

anjrjk instead of ank and with αk = 0 for all k ∈ N.

(xiii) [4, Theorem 4.4(i)] A ∈ (rtc(p) : ℓ∞(q)) if and only if (5*) holds and (24), (31) hold with

qnk =
∞∑
j=k

anjrjk instead of ank.

(xiv) [4, Theorem 4.4(iv)] A ∈ (rtc(p) : ℓ(q)) if and only if (5*) holds and (30), (34) hold with qnk =
∞∑
j=k

anjrjk instead of ank.

(xv) [4, Theorem 4.4(vii)] A ∈ (rtc(p) : c(q)) if and only if (5*) holds and (25)-(27) and (32) hold with

qnk =
∞∑
j=k

anjrjk instead of ank.

(xvi) [4, Theorem 4.4(x)] A ∈ (rtc(p) : c0(q)) if and only if (5*) holds and (26), (27) and (32) hold

with qnk =
∞∑
j=k

anjrjk instead of ank and with α = 0, αk = 0 for all k ∈ N.

(xvii) [4, Theorem 4.5(i)] A ∈ (rt0(p) : ℓ∞(q)) if and only if (5*) holds and (24) holds with qnk =
∞∑
j=k

anjrjk instead of ank.

(xviii) [4, Theorem 4.5(iv)] A ∈ (rt0(p) : ℓ(q)) if and only if (5*) holds and (30) holds with qnk =
∞∑
j=k

anjrjk instead of ank.

(xix) [4, Theorem 4.5(vii)] A ∈ (rt0(p) : c(q)) if and only if (5*) holds and (25)-(27) hold with qnk =
∞∑
j=k

anjrjk instead of ank.

(xx) [4, Theorem 4.5(x)] A ∈ (rt0(p) : c0(q)) if and only if (5*) holds and (26) and (27) hold with

qnk =
∞∑
j=k

anjrjk instead of ank and with αk = 0 for all k ∈ N.

(xxi) [9, Corollary 5.2] A ∈ (ar0(u, p) : ℓ∞(q)) if and only if (24) holds with qnk =
∞∑
j=k

anjζjk instead of

ank and

(6*)
{

k+1
(1+rk)uk

ankB
−1/pk

}
k∈N

∈ c for all n ∈ N.
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(xxii) [9, Corollary 5.3] A ∈ (ar0(u, p) : c(q)) if and only if (6*) holds and (25)-(27) hold with qnk =
∞∑
j=k

anjζjk instead of ank.

(xxiii) [9, Corollary 5.4] A ∈ (ar0(u, p) : c0(q)) if and only if (6*) holds and (27), (28) hold with qnk =
∞∑
j=k

anjζjk instead of ank.

(xxiv) [9, Corollary 5.5] A ∈ (ar0(u, p) : ℓ(q)) if and only if (6*) holds and (30) hold with qnk =
∞∑
j=k

anjζjk

instead of ank.

(xxv) [10, Theorem 4.1(i)] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ar(u, p) : ℓ∞) if and only if

(37) holds with qnk =
∞∑
j=k

anjζjk instead of ank and

(7*)
{(

(k+1)
(1+rk)uk

ankB
−1
)qk}

k∈N
∈ ℓ∞ for all n ∈ N.

(xxvi) [10, Theorem 4.1(ii)] Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ar(u, p) : ℓ∞) if and only if (38)

holds with qnk =
∞∑
j=k

anjζjk instead of ank and

(8*)
{(

(k+1)
(1+rk)uk

ank

)pk
}
k∈N

∈ ℓ∞ for all n ∈ N.
(xxvii) [10, Theorem 4.2] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ar(u, p) : c) if and only

if (7*), (8*) hold and (37), (38) hold with qnk =
∞∑
j=k

anjζjk instead of ank and (27) holds with

qnk =
∞∑
j=k

anjζjk instead of ank and with qn = 1 for all n ∈ N.

(xxviii) [10, Corollary 4.3] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ar(u, p) : c0) if and only

if (7*), (8*) hold and (37), (38) hold with qnk =
∞∑
j=k

anjζjk instead of ank and (33) holds with

qnk =
∞∑
j=k

anjζjk instead of ank and with αk = 0 for all k ∈ N.

(xxix) [3, Theorem 3.1] Let µ be any given sequence space. Then, A ∈ (λ(u, ν, p) : µ) if and only if

Q ∈ (λ(p) : µ) and Q(n) ∈ (λ(p) : c), where qnk =
∞∑
j=k

anjhjk and Q(n) = (q
(n)
mk) is as in (57).

(xxx) [18, Theorem 4.1(i)] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (bv(u, p) : ℓ∞) if and only if

(37) holds with qnk =
∞∑
j=k

anjϱjk instead of ank and

(9*) {ank}k∈N ∈ d2(p) ∩ cs for all n ∈ N.
(xxxi) [18, Theorem 4.1(ii)] Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (bv(u, p) : ℓ∞) if and only if (38)

holds with qnk =
∞∑
j=k

anjϱjk instead of ank and

(10*) {ank}k∈N ∈ d4(p) ∩ cs for all n ∈ N.
(xxxii) [18, Theorem 4.2] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (bv(u, p) : c) if and only if

(9*), (10*) hold and (37), (38), (40) hold with qnk =
∞∑
j=k

anjϱjk instead of ank.

(xxxiii) [18, Corollary 4.3] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (bv(u, p) : c0) if and only if

(9*), (10*) hold and (37), (38) and (41) hold with qnk =
∞∑
j=k

anjϱjk instead of ank.

(xxxiv) [19, Theorem 3.1] Let µ be any given sequence space. Then, A ∈ (λ(B, p) : µ) if and only if

Q ∈ (λ(p) : µ) and Q(n) ∈ (λ(p) : c), where qnk =
∞∑
j=k

anjξjk and Q(n) = (q
(n)
mk) is as in (57).

(xxxv) [8, Theorem 3.2(i)] A ∈ (ℓ̂∞(p) : ℓ∞) if and only if (20) holds with qnk =
∞∑
j=k

anjbjk instead of

ank.
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(xxxvi) [8, Theorem 3.2(ii)] A ∈ (ℓ̂∞(p) : c) if and only if (39) and (40) hold with qnk =
∞∑
j=k

anjbjk

instead of ank.

(xxxvii) [8, Theorem 3.2(ii)] A ∈ (ℓ̂∞(p) : c0) if and only if (22) holds with qnk =
∞∑
j=k

anjbjk instead of

ank and with qn = 1 for all n ∈ N.
(xxxviii) [8, Theorem 3.3(i)] A ∈ (ĉ0(p) : ℓ∞(q)) if and only if (24), (26) and (30) hold with qnk =

∞∑
j=k

anjbjk instead of ank.

(xxxix) [8, Theorem 3.3(ii)] A ∈ (ĉ0(p) : c0(q)) if and only if (24), (26), (29) and (28) hold with

qnk =
∞∑
j=k

anjbjk instead of ank.

(xl) [8, Theorem 3.3(iii)] A ∈ (ĉ0(p) : c(q)) if and only if (24)-(27) hold with qnk =
∞∑
j=k

anjbjk instead

of ank.

(xli) [8, Theorem 3.4(i)] A ∈ (ĉ(p) : ℓ∞(q)) if and only if (24), (26), (30), (31) and (43) hold with

qnk =
∞∑
j=k

anjbjk instead of ank..

(xlii) [8, Theorem 3.4(ii)] A ∈ (ĉ(p) : c0(q)) if and only if (24), (26), (29), (28), (33) and (43) hold

with qnk =
∞∑
j=k

anjbjk instead of ank.

(xliii) [8, Theorem 3.4(iii)] A ∈ (ĉ(p) : c(q)) if and only if (24)-(27), (32) and (34) hold with qnk =
∞∑
j=k

anjbjk instead of ank.

(xliv) [13, Theorem 4.1] Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ̂(p) : ℓ∞) if and only if (38) holds

with qnk =
∞∑
j=k

anjbjk instead of ank and {ank}k∈N ∈
{
ℓ̂(p)

}β

.

(xlv) [13, Theorem 4.1] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ̂(p) : ℓ∞) if and only if (37)

holds with qnk =
∞∑
j=k

anjbjk instead of ank and {ank}k∈N ∈
{
ℓ̂(p)

}β

.

(xlvi) [13, Theorem 4.2] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ̂(p) : c) if and only if

{ank}k∈N ∈
{
ℓ̂(p)

}β

and (37), (38) and (40) hold with qnk =
∞∑
j=k

anjbjk instead of ank.

(xlvii) [13, Corollary4.3] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ̂(p) : c0) if and only if

{ank}k∈N ∈
{
ℓ̂(p)

}β

and (37), (38) and (41) hold with qnk =
∞∑
j=k

anjbjk instead of ank.

(xlviii) [56, Theorem 13(i)] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(B̂, p) : ℓ∞) if and only if

(37) holds with qnk =
∞∑
j=k

anjςjk instead of ank and

(11*)
∞∑
i=k

(−1)i−k

ri

∏i−1
j=k

sj
rj
ani < ∞ for all n ∈ N.

(xlix) [56, Theorem 13(ii)] Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ(B̂, p) : ℓ∞) if and only if (11*)

holds and (38) holds with qnk =
∞∑
j=k

anjςjk instead of ank.

(l) [56, Theorem 15] A ∈ (ℓ(B̂, p) : f) if and only if Q ∈ (ℓ(p) : f) and Q(n) ∈ (ℓ(p) : c), where

qnk =
∞∑
j=k

anjςjk and Q(n) = (q
(n)
mk) is as in (57).

(li) [56, Theorem 16] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(B̂, p) : c) if and only if

{ank}k∈N ∈
{
ℓ(B̂, p)

}β

and (37), (38) and (40) hold with qnk =
∞∑
j=k

anjςjk instead of ank.



F. BAŞAR, M. YEŞİLKAYAGİL: A SURVEY FOR PARANORMED SEQUENCE ... 33

(lii) [56, Corollary 17] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(B̂, p) : c0) if and only if

{ank}k∈N ∈
{
ℓ(B̂, p)

}β

and (37), (38) and (41) hold with qnk =
∞∑
j=k

anjςjk instead of ank.

(liii) [23, Theorem 4.1(i)] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(F, p) : ℓ∞) if and only if

(38) holds with qnk =
∞∑
j=k

anjzjk instead of ank and

(12*)
∞∑
i=k

f2
i+1

fkfk+1
ani < ∞ for all n ∈ N.

(liv) [23, Theorem 4.1(i)] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(F, p) : ℓ∞) if and only if

(12*) holds and (37) holds with qnk =
∞∑
j=k

anjzjk instead of ank.

(lv) [23, Theorem 4.2(i)] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(F, p) : c) if and only if

(12*) holds and (38), (40) hold with qnk =
∞∑
j=k

anjzjk instead of ank.

(lvi) [23, Theorem 4.2(ii)] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(F, p) : c) if and only if

(12*) holds and (37), (40) hold with qnk =
∞∑
j=k

anjzjk instead of ank.

(lvii) [23, Corollary 4.3(i)] Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(F, p) : c0) if and only if

(12*) holds and (38), (40) and (41) hold with qnk =
∞∑
j=k

anjzjk instead of ank.

(lviii) [23, Corollary 4.3(ii)] Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(F, p) : c0) if and only if

(12*) holds and (37), (40) and (41) hold with qnk =
∞∑
j=k

anjzjk instead of ank.

(lix) [60, Theorem 10] Let µ be any given sequence space. Then, A ∈ (N t(p) : µ) if and only if

{ank}k∈N ∈ {N t(p)}β and Q ∈ (ℓ(p) : µ), where Q = (qnk) is qnk =
∞∑
j=k

anjξjk for all n, k ∈ N.

(lx) [61, Theorem 4.1] A ∈ (ℓ∞(N t, p) : ℓ∞) if and only if {ank}k∈N ∈ {ℓ∞(N t, p)}β and (20) holds

with qnk =
∞∑
j=k

anjujk instead of ank.

(lxi) [61, Theorem 4.4] A ∈ (ℓ∞(N t, p) : c) if and only if {ank}k∈N ∈ {ℓ∞(N t, p)}β and (39), (40)

hold with qnk =
∞∑
j=k

anjujk instead of ank.

(lxii) [61, Theorem 4.4] A ∈ (ℓ∞(N t, p) : c0) if and only if {ank}k∈N ∈ {ℓ∞(N t, p)}β and (39), (40)

and (41) hold with qnk =
∞∑
j=k

anjujk instead of ank.

Theorem 6.6. Let ã(n, k,m) = 1
m+1

m∑
i=0

qn+i,k, where qnk =
∞∑
j=k

anjbjk for all n, k ∈ N. Then, the

following statements hold:

(i) [59, Theorem 5.8(i)] A ∈ (c(B̂, p) : f) if and only if (51)-(53) hold with ã(n, k,m) instead of

a(n, k,m).

(ii) [59, Theorem 5.8(ii)] A ∈ (c0(B̂, p) : f) if and only if (51) and (52) hold with ã(n, k,m) instead

of a(n, k,m) and Q(n) ∈ (c0(p) : c), where Q(n) = (q
(n)
mk) is as in (57).

(iii) [59, Theorem 5.8(iii)] A ∈ (ℓ∞(B̂, p) : f) if and only if (51), (52) and (54) hold with ã(n, k,m)

instead of a(n, k,m) and Q(n) ∈ (ℓ∞(p) : c), where Q(n) = (q
(n)
mk) is as in (57).

(iv) [59, Theorem 5.8(iv)] A ∈ (ℓ∞(B̂, p) : f0) if and only if (52) and (54) hold with ã(n, k,m) instead

of a(n, k,m) and with αk = 0 for all k ∈ N and Q(n) ∈ (ℓ∞(p) : c), where Q(n) = (q
(n)
mk) is as in

(57).

Lemma 6.6. [17, Lemma 5.3] Let λ and µ be any two sequence spaces, A be an infinite matrix and

B be a triangle matrix. Then, A ∈ (λ : µA) if and only if BA ∈ (λ : µ). Using Lemma 6.6., the authors

mentioned above gave comprehensive matrix classes. Also, we have benefited from Malkowsky and Başar

[47] in this section.
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7. Some geometric properties of the space (λ(p))A

In Functional Analysis, the rotundity of Banach spaces is one of the most important geometric property.

For details, the reader may refer to [21, 24, 43]. In this section, we give the necessary and sufficient

condition in order to the space (λ(p))A be rotund and present some results related to this concept, where

λ(p) is any Maddox’s space and A = (ank) is an infinite matrix.

Definition 7.1. Let S(X) be the unit sphere of a Banach space X. Then, a point x ∈ S(X) is called

an extreme point if 2x = y + z implies y = z for every y, z ∈ S(X). A Banach space X is said to be

rotund (strictly convex) if every point of S(X) is an extreme point.

Definition 7.2. A Banach space X is said to have Kadec-Klee property (or propert (H)) if every

weakly convergent sequence on the unit sphere is convergent in norm.

Definition 7.3. A Banach space X is said to have

(i) the Opial property if every sequence (xn) weakly convergent to x0 ∈ X satisfies

lim inf
n→∞

∥xn − x0∥ < lim inf
n→∞

∥xn + x∥

for every x ∈ X with x ̸= x0.

(ii) the uniform Opial property if for each ϵ > 0, there exists an r > 0 such that

1 + r ≤ lim inf
n→∞

∥xn + x∥

for each x ∈ X with ∥x∥ ≥ ϵ and each sequence (xn) in X such that xn
w→ 0 and lim inf

n→∞
∥xn∥ ≥ 1.

Definition 7.4. Let X be a real vector space. A functional σ : X → [0,∞) is called a modular if

(i) σ(x) = 0 if and only if x = θ;

(ii) σ(αx) = σ(x) for all scalars α with |α| = 1;

(iii) σ(αx+ βy) ≤ σ(x) + σ(y) for all x, y ∈ X and α, β ≥ 0 with α+ β = 1;

(iv) the modular σ is called convex if σ(αx+ βy) ≤ ασ(x) + βσ(y) for all x, y ∈ X and α, β > 0 with

α+ β = 1;

A modular σ on X is called

(a) right continuous if lim
α→1+

σ(αx) = σ(x) for all x ∈ Xσ.

(b) left continuous if lim
α→1−

σ(αx) = σ(x) for all x ∈ Xσ.

(c) continuous if it is both right and left continuous, where

Xσ =

{
x ∈ X : lim

α→0+
σ(αx) = 0

}
.

Let λ(p) be any Maddox’s space and A = (ank) be an infinite matrix. Define σp on a sequence space

(λ(p))A by

σp(x) =
∑
k

|(Ax)k|pk . (58)

If pk ≥ 1 for all k ∈ N = {1, 2, . . .}, by the convexity of the function t 7→ |t|pk for each k ∈ N, σp is a

convex modular on (λ(p))A. Consider (λ(p))A equipped with Luxemburg norm given by

∥x∥ = inf {α > 0 : σp(x/α) ≤ 1} . (59)

(λ(p))A is a Banach space with this norm.

Taking Ar, Au, Er, B(r, s), B(r̃, s̃) and N t instead of A in (58), respectively, Aydn and Başar [10],

Başar et al. [18], Kara et al. [30], Aydın and Altay [8] and Aydn and Başar [13], Nergiz and Başar [56],

Yeşilkayagil and Başar [60] gave the following results:

Proposition 1. ([10, Proposition 5.1], [18, Proposition 5.1], [30, Proposition 2], [8, Theorem 4.1], [13,

Theorem 5.1], [56, Proposition 5], [60, Proposition 16]) The modular σp on ar(u, p) [bv(u, p), er(p), ℓ̂(p),

ℓ̂∞(p), ℓ(B̃, p), N t(p), respectively] satisfies the following properties with pk ≥ 1 for all k ∈ N:
(i) If 0 < α ≤ 1, then αMσp(x/α) ≤ σp(x) and σp(αx) ≤ ασp(x).

(ii) If α ≥ 1, then σp(x) ≤ αMσp(x/α).
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(iii) If α ≥ 1, then ασp(x/α) ≤ σp(x).

(iv) The modular σp is continuous.

Proposition 2. ([10, Proposition 5.2], [18, Proposition 5.3], [30, Proposition 3], [8, Theorem 4.2], [13,

Theorem 5.2], [56, Proposition 6], [60, Proposition 17]) For any x ∈ ar(u, p) [bv(u, p), er(p), ℓ̂(p), ℓ̂∞(p),

ℓ(B̃, p), N t(p), respectively], the following statements hold:

(i) If ∥x∥ < 1, then σp(x) ≤ ∥x∥.
(ii) If ∥x∥ > 1, then σp(x) ≥ ∥x∥.
(iii) ∥x∥ = 1 if and only if σp(x) = 1.

(iv) ∥x∥ < 1 if and only if σp(x) < 1.

(v) ∥x∥ > 1 if and only if σp(x) > 1.

(vi) If 0 < α < 1 and ∥x∥ > α, then σp(x) > αM .

(vii) If α ≥ 1 and ∥x∥ < α, then σp(x) < αM .

Theorem 7.1. The following statements hold:

(i) [10, Theorem 5.1] The space ar(u, p) is rotund if only if pk > 1 for all k ∈ N.
(ii) [18, Theorem 5.4] The space bv(u, p) is rotund if only if pk > 1 for all k ∈ N.
(iii) [56, Theorem 8] The space ℓ(B̃, p) is rotund if only if pk > 1 for all k ∈ N.
(iv) [60, Theorem 18] The space N t(p) is rotund if only if pk > 1 for all k ∈ N.

Theorem 7.2. ([56, Theorem 9] and [60, Theorem 19])

Let (xn) be a sequence in ℓ(B̃, p) [or N t(p)]. Then, the following statements hold:

(i) lim
n→∞

∥xn∥ = 1 implies lim
n→∞

σp(xn) = 1.

(ii) lim
n→∞

σp(xn) = 0 implies lim
n→∞

∥xn∥ = 0.

Theorem 7.3. The sequence space N t(p) has the Kadec-Klee property.

(i) ([56, Theorem 12] and [60, Theorem 21]) The sequence space ℓ(B̃, p) [N t(p)] has the Kadec-Klee

property.

(ii) ([56, Theorem 12] and [60, Theorem 21]) For any 1 < p < ∞, the space (ℓp)B̃ [(ℓp)
t
N ] has the

uniform Opial property.

8. Some problems for researchers

1. Investigate the domain of the Cesàro matrix C1 of order 1 in the following spaces;

(i) ω(p),

(ii) ω0(p),

(iii) ω∞(p),

(iv) f0(p),

(v) f(p),

(vi) f̂(p).

2. Define the matrix B̃ = (̃bnk) by the composition of the matrices E1, C1 and ∆ as

b̃nk :=

{
(nk)

2n(k+1) , 0 ≤ k ≤ n,

0 , k > n

for all k, n ∈ N. Investigate the domain of the matrix B̃ in the paranormed spaces listed in

Problem 1.

3. Investigate the domain of the Riesz matrix Rt in the paranormed spaces listed in Problem 1.

4. Investigate the domain of the Nrlund matrix N t in the paranormed spaces listed in Problem 1.

5. Investigate the domains A(ℓ∞(p)), A(c(p)), A(c0(p)) and A(ℓ(p)) of Abel method in the Maddox’s

spaces ℓ∞(p), c(p), c0(p) and ℓ(p), respectively.

6. Investigate the domains S(ℓ(p)), S(c(p)) and S(c0(p)) of the summation matrix S in the Maddox’s

spaces ℓ(p), c(p) and c0(p), respectively.
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7. Investigate the domains F (ℓ(p)), F (c(p)) and F (c0(p)) of double band matrix F in the Maddox’s

spaces ℓ(p), c(p) and c0(p), respectively.

8. Investigate the domains ∆(ℓ(p)) and Au(ℓ(p)) of the matrices ∆ and Au in the Maddox’s space

ℓ(p), respectively.

9. Investigate the domains Er(ℓ∞(p)), Er(c(p)) and Er(c0(p)) of the Euler mean in the Maddox’s

spaces ℓ∞(p), c(p) and c0(p), respectively.
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[17] Başar, F., Altay, B., (2003), On the space of sequences of p−bounded variation and related matrix mappings,

Ukrainian Math. J., 55(1), pp.108–118.
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[23] Çapan, H., Başar, F., (2015), Domain of the double band matrix defined by Fibonacci numbers in the

Maddox’s space ℓ(p), Electron. J. Math. Anal. Appl., 3(2), pp.31–45.

[24] Diestel, J., (1984), Geomety of Banach Spaces-selected Topics, Springer, Berlin, Germany, 198p.

[25] Grosse-Erdmann, K.-G., (1992), The structure of the sequence spaces of Maddox, Canad. J. Math., 44(2),

pp.298–307.
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Medine Yeşilkayagil is an associate professor of
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