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1. INTRODUCTION AND NOTATIONS

We denote the set of all sequences of complex entries by w. Any vector subspace of w is called
a sequence space. We write £, ¢, cg and f, for the spaces of all bounded, convergent, null and
almost convergent sequences, respectively. Also by bs, cs, £1 and ¢, we denote the spaces of all
bounded, convergent, absolutely and p—absolutely convergent series, respectively.

A sequence space A with linear topology is called a K—space if each of the maps r, : A = C
defined by r,(z) = z, is continuous for all z = (x,) € A and every n € N, where C denotes
the complex field and N = {0,1,2,...}. A Fréchet space is a complete linear metric space. A
K-space A is called an F'K-space if X is a complete linear metric space. A normed F K-space is
called a BK -space. Given a BK-space A we denote the n" section of a sequence x = (x3,) € A by
zlnl = i xpef and we say that x is; AK (abschnittskonvergent) when lim,,_,~ Hx — glnl HA =0,

k=0
AB (abschnittsbeschrénkt) when sup,,cy Hx[”} | , <ooand AD (abschnittsdicht) when ¢ is dense
in )\, where e” is a sequence whose only non-zero term is 1 in n‘* place for each n € N and ¢ is
the set of all finitely non-zero sequences. If one of these properties holds for every x € A, then
we said that the space A\ has that property. It is trivial that AK implies AB and AD.

Definition 1.1. Let X be a real or complex linear space, g be a function from X to the set
R of real numbers. Then, the pair (X, g) is called a paranormed space and g is a paranorm for
X, if the following axioms are satisfied for all elements x,y € X and for all scalars a:

(i) g(0) =0 if = = 6, where 0 is the zero element of X,
(i) g(x) >0,
(i) g(z) = g(=),
(iv) g(z +y) < g(z) + 9(y),
(v) If (o) is a sequence of scalars with le an, = « and (x,) is a sequence in X with
n—oo
lim g(z, — z) =0, then lim g(a,x, —ax) = 0.
n—oo n—oo
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A paranorm g is said to be total, if g(x) = 0 implies x = 0. Let g be a paranorm on a sequence
space N. If g(x) # g(|z|) for at least one sequence in X\, then X is called a sequence space of
non-absolute type; where |x| = (|zk|).

For simplicity in notation, here and in what follows, the summation without limits runs from
0 to co. We use the notation O(1) as in (28], that is, ”f = O(¢p)” means ”|f| < m¢”, where m
18 a constant.

If a sequence space A\ paranormed by g contains a sequence (by,) with the property that for
every x € A there is a unique sequence of scalars (am,) such that

nli_)rrolog (x — Z ak.bk) =0
k=0
then (by) is called a Schauder basis (or briefly basis) for X. The series Y apbr which has the
k

sum x is then called the expansion of x with respect to (by) and written as © = ayby.
k
Following Hamilton and Hill [27], Maddox [35, 36] gave the following definition:

Definition 1.2. Let A = (ank)nken be an infinite matriz over the complex field C and
p = (pr) be a sequence of positive numbers. Then, a sequence x € w is said to be strongly
summable by A to £ if

Z ank|xp — £|P*
k

exists for each n € N and tends to zero as n — oo, this is denoted by z, — ([A,p]. If
> ank|xg P = O(1), then we say that x is strongly bounded by A and denoted by z, = O(1)[A, p].
k

Let A denote the class of all infinite matrices A = (ank)n keN for which there exists a positive
integer K such that

(i*) apg > 0 for each n > 1 and for each k& > K,
(ii) li_)m (|ank| —ank) =0for 1 <k < K.

Two important subclasses of A4 are the nonnegative matrices, and the matrices satisfying (i*)
and the condition a,; — ar as n — oo for 1 < k < K, [35]. Uniqueness of strong limit is
characterized for matrices in A by Maddox [35] as:

Lemma 1.1. [35, Theorem 2] Suppose A is in A and (py) is bounded for all k € N. Then,
the limit of a strongly summable sequence is unique if and only if one (at least) of the following

fails to hold:
(i) > ang converges for each n € N,
k
(ii) nh_)Igozk:ank =0.

Definition 1.3. [35] The pair (A,p) consisting of a matriz A and a positive sequence p = (px)
is said to be a strongly reqular method if xj — € as k — oo implies x, — L[A,p].

In the case pr, = p > 0 for all k € N it was shown in [27] that necessary and sufficient
conditions for strong regularity are

1i_>m anr, = 0 for each k € N, (1)
supz |ank| < 00, (2)
neN L

that is, (A, p) is strongly regular if and only if A maps null sequences into null sequences.
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Using Definition 3.1. and following Hamilton and Hill [27], Maddox [35] gave the following
results:

Theorem 1.1. The following statements hold:
(i) [35, Theorem 3] Let m and M be constants such that 0 < m < px < M for all k € N,
then (A, p) is strongly regular if and only if the conditions (1) and (2) hold.
(i) [35, Theorem 4] Suppose that (1) and (2) hold and the sequence (py) converges to a
positive limit. Then, kli)rr;omk = ( implies that x — L[A, p| uniquely if and only if

2 ank
k

(iii) [35, Result of Theorem 5] Suppose that A € A and ||Al| < co. Let 0 < pr < qx and qr/pk
be bounded for all k € N. Then, x; — ([A,q] implies xy, — L[A, p].

lim sup > 0.

n—o0

2. MADDOX’S SPACES

In this section, we give definitions and some topological properties of Maddox’s spaces.

Maddox [35, 36] used the notations [A, p], [4, ple and [A, p|o for the sets of z € w which are
strongly summable, strongly bounded and strongly summable to zero by A, respectively.

Taking A to be the unit matrix I, Maddox [35] introduced the spaces [I, ploc = loo(p) given
in [58] for the case 0 < py < 1 and [I,p] = ¢(p), [I,plo = co(p) as

lo(p) = {ZE = (z) € w: sup |z |P* < oo} ,
keN
c(p) = {x = (zy) € w: 3¢ € C such that klim |z) — £PF = 0} ’
—00
C(](p) = {.7) = (xk) € w: lim |J)k|pk = 0} ,
k—o0

and taking the summation matrix S = (spx) and Cesaro matrix C' = (¢,) of order one instead
of the matrix A, he gave the spaces [S, p] = ¢(p) established in [58] for the case 0 < py <1 and
[C,1,p] = w(p), [C,1,plo = wo(p) and [C, 1, plec = weo(p), respectively, as

lp) = {95: (wh) €w: Y g < OO},

k

1 n
— — . m - _ Y|Pk —
w(p) = {a: = (z) € w: 3 € C such that nlgn - ,;1 |z — €|+ = 0} ,

e
wo(p) = {x:(af;k)Ew:nli)n;on2|xk|pk:0},

k=1
1 n
woolp) = o= (w) €wisup~ S farl < oo b,
neN T 1
where S = (spx) and C' = (¢,x) are

o 1, 0<k<n,
A N , k>n

1/n , 0<k<mn,

andcnk:{ 0 k>

3)

for all k,n € N. In the case (py) are constant and equal to p > 0 for k € N we write {(p) = ),
w(p) = wp, ete.
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Taking (py) is a sequence of real numbers such that 0 < py < suppcypr < 00, Nanda [53, 55]
introduced the spaces fo(p), f(p) and f(p) b

m—0o0

folp) = {x = (zg) €Ew: lim |tmn(x)|P™ = 0 uniformly in n} ,

f(p) = {x =(zp) €Ew:HeC> li_r}n |t (z) — £|P™ = 0 uniformly in n} ,

=
s
I

{ZL’ = (x) Ew: sup |tmn(z)P™ < oo} ,

m,neN

where

tmn = m+ 1 an—i-k

for all m,n € N. If we take p = p > 0 for k € N, then we write

m,neN

flp) = ]?: {x Ew: sup [tmn(x)|P < oo} ,

(see [55]).
Following him, Bagar [14] introduced the spaces bs(p) and bs(p) by

bs(p) :={x = (zr) Ew: Pr€lo(p)},
bs(p) = {a = (&) €w: Pr e fp)}

where Pz denotes the sequence of partial sums of an infinite series Y xy, i.e. (Px), = Y.
k

for all n € N.
We shall assume throughout that IV denotes the finite subsets of N and F denotes the collection
of all finite subsets of N.

3. SOME TOPOLOGICAL PROPERTIES OF MADDOX’S SPACES

Before Maddox, Bourgin [20], Nakano [50, 51, 52|, Landsberg [32] and Simons [58] used the
spaces £(p) and {(p), as follows:

Let L be a linear topological space, A be a bounded open set in L and A’ = {\z: |\| < 1,z €
A}. Define the quasi norm ||z|| by ||z|| = inf{h : x € hA'}.

Lemma 3.1. [20, Theorem 13] If L is locally bounded, the quasi norm on L satisfies

[z1 + zol| < ballz1]l + [lz=2])

for some by > 1 depending on A and L.
ba in Lemma 8.1. is called the multiplier of the quasi norm. The quantity

Br = inf{b4 : A bounded and open in L}
is a characteristic of L, [20].
Taking pr, = (1 + log(k + 1)~Y2)=1 for all k € {1,2,...}, Bourgin [20] considered the linear
sequence space £(p) with the metric d(z,y) = ) |rx — yx[P* and he showed that By, is not a

k=1
possible multiplier.
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For a sequence of positive numbers (pg) with pp > 1 Nakano [51] defined the sequence

space £(p1,p2,...) consists of the sequences x = (xj) such that Z o lawg Pk < 400 for some

o0
a > 0. Putting m(z) = > pik]a:k\pk for © € £(p1,p2,...), he obtained a modular (the definiton
k=1

of modular given in [50]) m on ¢(p1,p2, -..), and putting

(4)

1
o = inf =,
m(éx)<1 [€]
he introduced a norm on ¢(p1,p2,...) which is a complete sequence space with the norm (4).

oo

Taking pr < 1 and = € ¢(p) and putting m(x) = > |zk|Pk, Nakano [52] obtained a concave
k=1

modular m(x) on £(p). Also, he gave the following result: ”Every bounded linear functional ¢

on {(p) is represented in the form

[ee)
r) = apzy,
k=1

where a = (ay) € {s and = = (x1) € {(p).
Definition 3.1. [32] The following statements hold:

(i) If 0 < r < 1, a non-void subset U of a linear space is said to be absolutely r—convex
provided that

A"+ |p]” <1 imply that Ae +py € U, (x,y € U),

or equivalently,

n

n
Z |Ai]" < 1 imply that Z)‘ixi el, (x1,....,x,€U).
i=1 i=1
(ii) A linear topological space is said to be r—convez if there is a neighbourhood base of 0
that consists of absolutely r—convex sets.
Let L be a linear sequence space containing all finite sequences, and (p) be a sequence of
real numbers with 0 < p, < 1 and 0 < liklgiogfpk < 1lforal ke N. All z = (z,) € L with

d(x) =Y |zg|P* < +oo form a linear sequence space ¢(L; (pg)), which is defined by the metric
k

d(x—y) for z,y € ¢(L; (px)), becomes a linear topological space. The space ¢(L; (pg)) is r—convex
for every r with 0 < r < likm infpg, but can not be s—convex for any s with 1ikm infp, < s <1,
—00 —00

Landsberg [32]. If we take L = w, we have the space ¢(p).
Writing 7, and 7,° for the topology introduced on £(p) and foo(p) by the metrics d(z,y) =
g(z —y) and dy(z,y) = g1(z — y), respectively, defined by

glx) =) |zx*  and  gi(xz) = sup|zx/"*,
k
k

Simons [58] gave the following results:

Theorem 3.1. The following statements hold:
(i) [58, Lemma 1] ({(p), p) is a complete linear topological space.
(ii) [58, Lemma 2] If 0 < py < g <1 for all k € N, then

(1) £(p) < €(q),
(2) The identity map ({(p), 1p) — (€(q),Tq) is continuous,
(

3) U(p) is dense in (£(q),Tq).
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(iii) [58, Theorem 1] If 0 < px < qi < 1 for all k € N, then the following four conditions are
equivalent:
(1) 7, is the topology induced on €(p) by 4.
(2) If (2™)nen € £(p) and 2™ — 0 in 74 as n — oo, then 2™ — 0 in 7, as n — 0.
(3) L(p) is closed in (£(q),Tq).
(4) &p) = €(q).
(iv) [58, Theorem 3] Let 0 < py, <1 for all k € N and 1/py + 1/qr = 1. Then, the following
two conditions are equivalent:
(1) Lp) = 4.
(2) >> B% < oo for some integer B > 1.

(v) [58, Tkheorem 5] The following four conditions on (py) are equivalent:
(1) (¢(p),7p) is locally convex.
(2) £p) = 4.
(3) 1p is identical with the topology induced on £(p) by 1.
(4) £(p) is closed in (¢1,711).
(vi) [58, Theorem 7] The following three conditions on (k) are equivalent:
(1) The map (xn) = > xkCk i a continuous linear functional on (£(p),Tp).
(

2) Zxk@ is converggnt for all (zy) € £(p).
(3) (Ck) € loo (D).

(vii) [58, Theorem 8] If 0 < pr < qr < 1 for all k € N, then the following conditions are
equivalent:
(1) 77° is the topology induced on lx(q) by T,°

2) The identity map (Loo(q), 77°) — (boo(q), 7,°) is continuous.

oo

1) 7°° is the topology induced on ls by T, where 7°° is the topology on U defined by
the supremum metric.

The identity map (loo, 7°°) = (oo, 7,°) 48 continuous.

4) Lo is dense in (oo (p), 75°)-
(5) (boo(p), 75°) is a linear topological space.

If we take 0 < pp < qx for all £ € N, then it is true that ¢(p) C ¢(q). We note that no
restriction such as boundedness has to be placed on the sequences (pi), (qx) for the validity of
the inclusion. But the inclusion w(p) C w(q) does not hold when 0 < p < gi. This brings out
an immediate distinction between the spaces £(p) and w(p), [35].

Also, one can find that the boundedness of p = (py) is sufficient for the spaces [4,p] and
[A, p]oo to be linear spaces in Theorem 1 of [35]. So, the argument of [35] shows that [A, p|o is
linear when p = (pg) is bounded. It was also noted in [35] that py = O(1) is necessary for the
linearity of the spaces £(p) and w(p). In [36], Maddox showed that c¢(p) is a linear space only
if pr = O(1). In general, pr = O(1) is not necessary for [A,p], [4, plo and [A, p|ec to be linear
spaces.

In the case, 0 < pi < 1 for all k € N, the inequality |z + yx|P* < |xg|Pk + |yk[P* suggests the
natural paranorm
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g(x) = sup > _ ang|zsl™ (5)

neN "/
for the spaces [A, plo and [A, plo. In general [A, p] is not a subset of [A, p]~ so that (5) is not
suitable for [A,p]. In the more general case pr = O(1), a suitable paranorm for [A,p|o and

[Avp]O is

1/M
ga(z) = sup (Z ankll‘kl“) ; (6)
neN X

where M = max{1, px}, which gives (5) when 0 < p; <1 for all k£ € N, [36].
For arbitrary A and (pg), we have the inclusions [A,plo C [4,p] and [A,plp C [A,p]e. For
the inclusion [A, p] C [A4, p]s holds the necessary condition is that

|Al| = s.upE:an;.C < 00, (7)
neN "/

whether (pg) is bounded or not. If (pg) is bounded then (7) is sufficient for [A,p] C [A,plso-
Thus, in this case we have that [A, p] is a subset of [A, p| if and only if (7) holds, and then we
may do the space [4, p] a paranormed space with the paranorm (6). Also, the spaces [A, p|op and
[A, plo are complete, [39].

Theorem 3.2. The following statements hold:

(i) [36, Theorem 1| For any nonnegative matrix A and any bounded sequence p = (py), the
space [A,plo is paranormed space by the paranorm (6).
(ii) [36, Corollary 2 of Theorem 1] If A is a nonnegative matriz and 0 < inf py < sup py < 0o
for all k € N, the space [A, Dl is paranormed space by the paranorm (6).
(iii) [36, Theorem 2] wso(p) is paranormed space by the paranorm (6) if and only if 0 <
inf p, < suppi < 0.

In 1969, Maddox [39, 40] studied some topological properties of the spaces [A,p|, [4,p]o and
[A, plec as:

Theorem 3.3. Define the set S by S = {k : 0 < sup,,cn nk < 00} and let A = (ank) be a lower

semi-matriz such that a,r, — 0 as n — oo for all fizred k € N. Then, the following statements
hold:

(i) [40, Theorem] [A,plo and [A,p] are linear if and only if supcg pr < 00.
(ii) [39, Theorem 3] Let anxy < M for all n,k € N and liminf Y a,r > 0. Then, [A,p] is
k

n—oo
linear if and only if supgen pr < 0.
(iii) [39, Theorem 4] Let M}, = sup,,cy ank > 0 for each k € N. Then, [A, pls is paranormed
space by the paranorm (6).
(iv) [39, Theorem 1] For an arbitrary A, [A, ples is linear if and only if supycg pr < 00.
(v) [39, Theorem 5] Let pr, = O(1) and ||A|| < oo for an arbitrary A. Then, either of the
following conditions is sufficient for [A,p| to be complete:

(1) limsup ) ang = 0.

n—oo
(2) limsup ) ank > 0 and inf py, > 0.
n—oo kL

(vi) [39, Theorem 6] Let pr, = O(1). Then ¢(p) and w(p), equipped with their natural para-
norms are complete.
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Thus, in the light of above information we can write: Let (px) be a bounded sequence of
strictly positive real numbers with sup,eypr = H and M = max{1, H}. {(p) is a linear space if
and only if H < oo and it is a complete paranormed space (cf. [35, 39]) with

1/M
g(a) = (Z |xk|pk> .

k

The sets co(p), c(p) and €o(p) are linear spaces if and only if p = (px) € loo. I p = (pi) € Lo
and infgen pr > 0 then the sets cy(p), ¢(p) and £ (p) reduce to the classical sets ¢y, ¢ and l,
respectively. The identities co(p) = co, ¢(p) = ¢ and lo(p) = lo are satisfied if and only if
0 < infrenpr and supycy pr < oo. The function

g1(x) = sup |ay|P/™M
keN

on the spaces o (p), c¢(p) and co(p) introduced a topology 7, via the corresponding metric
d(z,y) = g1(x —y). Then, ¢(p) and cy(p) are complete paranormed spaces paranormed by g; if
p = (pr) € lo. Also, £o(p) is a complete paranormed space by g; if and only if infxey pr > 0. In
ls(p), g1 is a paranorm and 7,4, is a linear topology only in the trivial case infyen pr > 0, when
l5(p) = €. Indeed the natural topology of o (p) is not metrizable, hence not paranormable
unless /oo (p) = loo. In co(p), g1 is a paranorm (without the restriction infyen py > 0) and 7, is
an FK topology, so that by the uniqueness of FK topologies [62, Corollary 4.4.2] 7,, coincides
with the projective limit topology. In ¢(p), again g; is a paranorm and 7,4, is a linear topology
only if infrenypr > 0, when ¢(p) = ¢. But, in contrast to £o(p), the natural topology of ¢(p)
can be induced by a paranorm. A convenient one is go(x) = g1(x — e), where £ is the unique
number with z — e € ¢o(p) and e = (1,1,1,...), (cf. [58, 35, 36, 38, 41]).

Theorem 3.4. Nanda [53, 55] gave the following results:

(i) [53, Proposition 1] The inclusions co(p) C fo(p), c(p) C f(p) and fo(p) C f(p) hold.
(ii) [53, Proposition 2] If 0 < px < qr < oo for all k € N, then the inclusions fo(p) C fo(q)
and f(p) C f(q) hold.
(iii) [53, Theorem 1] The space fo(p) is a complete linear topological space paranormed by g
defined by
g(x) = sup [tn(a)[Pm/M. (8)
m,neN
If infen pm > 0, then f(p) is a complete linear topological space with respect to the
paranormed g.
(iv) [53, Proposition 3] The spaces fo(p) and f(p) are 1-conver.
(v) [55, Theorem 1] Let infyenpr > 0 for all k € N. Then, the space f(p) is a complete
linear topological space paranormed by g defined as in (8).
(i) [55, Proposition 1] f(p) is 1—convex.
(iii) [55, Theorem 2] Let 0 < py < g < oo for all k € N. Then, J/“\(q) is a closed subspace of

o~

f(p).

Bagar [14] obtained that: The space l;s(p) is linearly isomorphic to the space f(p) Following
him, Basar and Altay [16] gave the following results:

Theorem 3.5. The following statements hold:
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(i) [16, Theorem 2.1] The space bs(p) is a complete linear metric space paranormed by g
defined by

pr/M

g(x) = sup

iff inf pp > 0.
keN d ken’*

1 k
k+1§%m

(1) bs(p) C bs if and only if h = infrenpr > 0.
(2) bs(p) D bs if and only if H = supyenpr > 0.
(3) bs(p) =bs if and only if 0 < h < H < 0.

4. SOME NEW MADDOX’S SPACES

In this section, we assume that p = (pr) be a bounded sequence of strictly positive real
numbers with sup,cypr = H and M = max{1, H} unless stated otherwise.

Let U denotes the set of all sequences u = (uy) such that ug # 0 for all £ € N. Define the
matrices difference A = (d,;,), Riesz R* = (rf,), Norlund N* = (ul,, ), generalized weighted mean
or factorable G(u,v) = (gnk), generalized difference B(r, s) = (buk(r, s)), double sequential band
B(ﬁg) = (bnk(rk’) Sk’))a triple band B(Ta 57t) = (bnk(ra 37t))7 double band F = (fnk)7 A= (agk)
and A" = (a*,) by

(_1)nik , n—=1<k<n, rt tk‘/Tn , 0<k<n,
0 , otherwise ’ nk = , k>n

tnfk/Tn ’ 0§k§n7
0 , k>n

und , 0<k<n,
, otherwise

S
3
=~
~—
3
w
SN~—
I
—— —
S w3

k:n, 9 k:n,
k:n_la ’ nk:Tkask ) k:n_]-a

, otherwise , otherwise
_fn+1 kin_l T k) nZk?
fn ’ - ’ = k ].
— __Jfn — s, N + ?
Fr Tt vk;”Q bk (1 8, 8) = t , n=k+2,
0 ; Otherwise 0 , otherwise
a” _ 1;11]‘ vg , 0<k<n, at, — _l)n_kuk , n—1<k<n, ( )
nk 0 , k>n nk 0 , otherwise

n n
for all k,n € N, respectively; where (t) is a sequence of positive numbers, T,, = Y tr, = Y t,— for all
k=0 k=0
n €N, r st € R\{0}, 7 = (ry) and § = (s;) are the convergent sequences whose entries either constants

or distinct non-zero numbers for all ¥ € N, v,u,v € U and (f,) is a sequence of Fibonacci numbers
defined by the linear recurrence relations

f—{ 1 . n=0,1,
" foci+ a1 , n2>2

and denote the Euler matrix of order r with E” = (e, ) defined by

o (@ =r)nkrk L 0<k<n
nk 0 , otherwise

for all k,n € N, where 0 < r < 1.
The summability domain A4 of an infinite matrix A in a sequence space A is defined by
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Aa={z=(xp) cw: Az € A\}. (10)

Taking (px) not necessarily bounded, Ahmad and Mursaleen [1] and Malkowsky [44] introduced the
spaces Al (p), Ac(p) and Acy(p) as

Als(p) = {zx
Ac(p)
Aco(p) = Az

Following them, Choudhary and Mishra [22] defined the same spaces with bounded (py) and gave the
following results:

(zr) €w: Az € l(p)},
(2g) Ew: Az € c(p)},
(zg) Ew: Az € co(p)} -

X

—~

(i) [22, Properties] Al (p) and Ac(p) are paranormed spaces with the paranorm

g(x) = sup [Az|?/M (11)
keN
if and only if 0 < infrenpr < H < oo for all & € N.
(ii) [22, Properties| If p = (pg) is a bounded sequence, then Acy(p) is a paranormed space with the
paranorm (11).

Altay and Basar [2, 4] defined the Riesz sequence spaces rt(p), rt (p), ri(p) and rf(p) as the domain

of the Riesz matrix in the spaces £(p), £oo(p), c(p) and co(p), respectively, as

r'(p) = {x= () ew:Rxely(p)},
% (P) {e=(zx) €w: Re € b (p)},
re(p) {x =(xp) Ew: Rz €c(p)},
ro(p) = {z=(xx) €w:Rreco(p)}.

If we take (px) = e for all k € N the spaces r_(p), r’(p) and rf(p) are reduced the spaces r’_, r’ and rf
introduced by Malkowsky [46]. One can find the following results in their papers:

Theorem 4.1. The following statements hold:
(i) [2, Theorem 2.1] r*(p) is a complete linear metric space paranormed by g, defined by
pry\ /M

k
1
g(w) = Z Tkztjl'j with 0 < pp, < H < 0.

ii) [2, Theorem 2. e Riesz sequence space v*(p) of non-absolute type is linearly isomorphic to

ii) [2, Th 2.3] The Ri t bsol is li ly i hi
the space £(p), where 0 < pp < H < 0.

iii) [4, Theorem 2.1] r_(p), ri(p) and r§(p) are the complete linear metric spaces paranormed by g,

iii) [4, Th 2.1] 7t ! drf th lete li tri db
defined by

pr/M

g(x) = sup Zt xj

neN Tk

g is a paranorm for the spaces 1% (p) and ri(p) only in the trivial case infrenypr > 0 when
T5e(p) =15 and r¢(p) = re.
t

(iv) [4, Theorem 2.3] The Riesz sequence spaces T4, ¢

(p), rt(p) and rf(p) of non-absolute type are
linearly isomorphic to the spaces Lo (), ¢(p) and co(p), respectively, where 0 < pr, < H < 00.
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Using the notation A(u, v;p) for A € {{s, ¢, co, ¥y}, Altay and Basar [3, 5] defined the spaces A(u, v; p)
by
k
Mu,v;p) == (ax=(z;) Ew:y= ZUijiﬂj € Ap) ¢,
j=0
called generalized weighted mean sequence spaces.
It is natural that these spaces may also be redefined with the notation of (10) that

)\(Uﬂ/;p) = {)‘(p)}G(u,u)'

If pp, =1 for all k € N, we write A(u, v) instead of A(u, v;p) introduced by Malkowsky and Savas [49].
Following them, Altay and Bagar [3, 5] gave the following results:

Theorem 4.2. The following statements hold:

(i) [3, Theorem 2.1(a)] A(u,v;p) are the complete linear metric spaces paranormed by g, defined by
& pr/M
g(x) =sup | upv;z;
keN |
g s a paranorm for the spaces loo(u,v;p) and c(u,v;p) only in the trivial case infrenpr > 0
when Loo(u, v;p) = loo(u,v) and c(u,v;p) = c(u,v).
(ii) [3, Theorem 2.1(b)] The sets A(u,v) are the Banach spaces with the norm ||z xw,.) = [|y||x-
(iii) [3, Theorem 2.2] The generalized weighted mean sequence spaces Lo (u, v;p), c(u,v;p) and co(u, v; p)
of non-absolute type are linearly isomorphic to the spaces Lo (p), c(p) and co(p), respectively,
where 0 < pr, < H < oo.
(iv) [3, Theorem 2.3] The sequence space co(u,v) has AD property whenever u € cg.
(v) [5, Theorem 2.1(a)] £(u,v;p) is a complete linear metric spaces paranormed by g, defined by
i pr\ /M
g(@) = | Y. D vz,
k |5=0
(vi) [5, Theorem 2.1(b)] Let 1 < p < oo. Then, £,(u,v) is a Banach space with the norm ||z||s, (u,) =
ylle, -
(vii) [5, Theorem 2.2] The sequence space £(u,v;p) of non-absolute type is linearly isomorphic to the
space £(p), where 0 < pp < H < 0.
(viii) [5, Theorem 2.3] Let u € 1 and 1 < p < oo. Then, the sequence space {(u,v;p) has AD property.

Aydin and Basar [9, 10] defined the spaces aj(v,p), aL(v,p) and a"(v,p) as the domain of the A"
matrix in the spaces ¢o(p), ¢(p) and £(p), respectively, as

ag(v,p) = |
ac(v,p) = A
a"(v,p) = {x=(zr) €w: A"z €l(p)}.

In the case (vg) = (px) = e for all k € N the spaces aj(v, p) and al.(v,p) are reduced the spaces aj and a,
introduced by Aydin and Bagar [11] and in the cases py = p for all k € N and (vy) = e, the space a" (v, p)

is reduced the spaces ay,(v) and ay,, respectively, where a;, is introduced by Aydin and Basar [12].

Theorem 4.3. The following statements hold:

(i) [9, Theorem 2.1] The spaces af(v,p) and a%(v,p) are the complete linear metric spaces para-
normed by g, defined by

& pr/M
1 )
g(x) =sup 7= > 1+,
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g is a paranorm for the space al.(v,p) only in the trivial case infreypr > 0 when al(v,p) = al.
ii) [9, Theorem 2. e sequence spaces ah(v,p) and a%(v,p) of non-absolute type are linearly
ii) [9, Th 2.2] Th 0 d al bsolute t li [
isomorphic to the spaces co(p) and c¢(p), respectively, where 0 < p < H < 0.
iii , Theorem 2.1] a" (v, p) is a complete linear metric spaces paranormed by g, defined by
iii) [10, Th 2.1] a” ) lete i tri d b d d b
pry\ /M

where 0 < pp, < H < oo for all k € N.
(iv) [10, Theorem 2.2] ay,(v) is the linear space under the coordinatewise addition and scalar multi-
plication, which is the BK —space with the norm

1
A p\ 1/p

1 _
2| = Z mZO*‘Tﬂ)Uﬂj ;

k j=0
where 1 < p < oo.

(ii) [10, Theorem 2.3] The sequence space a”(v,p) of non-absolute type is linearly isomorphic to the
space £(p), where 0 < pp, < H < oo for all k € N.

Asma and Colak [7] and Basar et al. [18] defined the spaces A(u,A,p) and bu(u,p) as the set of
all sequences such that A“—transforms of them are in the spaces A(p) and £(p), respectively, where
A € {co, ¢, 0o} that is

lLoo(u, Ay p) = buso(u,p) = A

=
{

=

Then, they obtained the following results:

2g) € w: {urAzg} € loo(p) < 00},

7)) € w: {urAzy} € ¢(p)},

xg) € w: {urAz} € co(p)},

2g) € w: {urAzg} € L(p)}, (0 < pr < H < 00).

c(u, A,p

)
)
co(u, A, p)
)

r =
r =
r =
bu(u,p T =

(i) [7, Theorem 1.1] Let (px) be a bounded sequence of strictly positive real numbers and u €
U. Then, co(u,A,p) is a paranormed space with paranorm g(z) = supgecy |ukAxk|p’“/M. If
infrenpr > 0, then £ (u, A, p) and c(u, A, p) are paranormed space with the same paranorm.

(i) [18, Theorem 2.1] The space bv(u,p) is a complete linear metric space paranormed by g defined

by

1M
g(z) = <Z |UkAfEkpk> ;
k

where 0 < pp, < H < oo for all £ € N.
(iii) [18, Theorem 2.3] The sequence spaces bv(u,p) and bus, (u,p) of non-absolute type are linearly
isomorphic to the spaces ¢(p) and ¢ (p), respectively, where 0 < py, < H < 0.
Kara et al. [30] defined the Euler sequence space e (p) as the domain of the Euler matrix of order r,
E" in the space {(p) as
e'(p) = {x=(rx) €Ew:Ez€l(p)},0<pr <H<).
Then, they gave the following results:

i , Theorem 1] e"(p) is a complete linear topological space paranormed by ¢ defined by
i) [30, Th 1] e"(p) i lete li logical d by g defined b
5 pey\ /M
k o
o) = | 230 (F)a-nimss| )
w |li=o M
where 0 < pp, < H < oo for all £ € N.

(ii) [30, Theorem 2] The Euler sequence space e”(p) of non-absolute type is linearly isomorphic to
the space ¢(p), where 0 < py, < H < oo.
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Bagar and Cakmak [19] introduced the spaces A(B, p) as the domain of the triple band matrix B(r, s, t)
in the spaces A(p), where A € {co, ¢, 0}, as

AB,p) = {z=(2p) €w:y=(trk—2+svp_1+rax) EAXP)}.

If X is any normed or paranormed sequence space then we call the matrix domain Ag(, s 1) as the gener-
alized difference space of sequences. If pp, = 1 for all k € N, we write A(B) instead of A\(B,p).

Theorem 4.4. Basar and Cakmak [19] gave the following results:

(i) [19, Theorem 2.1(a)] The spaces A\(B,p) are the complete linear metric spaces paranormed by g,
defined by

g(x) = sup [twy_o + sTp—1 + mk|m/M )
keN

g is a paranorm for the spaces s (B,p) and ¢(B,p) only in the trivial case infren pr > 0 when
loo(B,p) = loo(B) and ¢(B,p) = ¢(B).

(ii) [19, Theorem 2.1(b)] The sets A(B) are Banach spaces with the norm ||z| p(r.s,c) = [[¥]lx-

(iii) [19, Theorem 2.2] The generalized difference space of sequences €oo (B, p), ¢(B,p) and c¢o(B,p) of
non-absolute type are paranormed isomorphic to the spaces lo(p), c(p) and co(p), respectively,
where 0 < pr, < H < o0.

(iv) [19, Theorem 2.3] Suppose that | — s + V/'s2 — 4tr| > 2r. Then, the sequence space c¢o(B) has
AD-property.

Nergiz and Basar [56] and Ozger and Basar [59] defined the spaces )\(E, p) as the set of all sequences
whose B(7, §)—transforms are in the spaces £(p) and A(p), respectively, where \ € {{, ¢, co}, that is

Z(E,p) = x=(xp) Ew: Z|7‘k$k+3k 1Tp— 1|p’“<oo},(0<pk§H<oo)7

k

keN

Km(é,p) = { W sup |rxk + sp_1xp—1 |t < oo} ,
«(B) = o=

w: lim |rpzg + sp_12p_1 — £)P" = 0 for some £ € R} ,
k—o0

co(g,p)

{ = (zg) €w: lim |rpzg + sp_12p_1|"* = 0} .
k—o00

and they obtained the following results:

(i) [56, Theorem 1] The spaces E(E, p) is a complete linear metric spaces paranormed by g, defined
by

1/M
g9(z) = <Z Irear + Sk—lxk—lpk> :

k

(i) [56, Theorem 2] Convergence in £(B, p) is stronger than coordinatewise convergence.

(iii) [56, Corollray 4] The sequence space €(§ , p) of non-absolute type is linearly paranorm isomorphic
to the space £(p), where 0 < pr, < H < 0.

(iv) [56, Theorem 5] The space (B, p) is has AK.

(v) [59, Theorem 3.1] The spaces )\(E ,p) are the complete linear metric spaces paranormed by g,
defined by g(x) = supgey [rezr + sp_1zp_1 |7/ M.

~

Aydin and Altay [8] and Aydin and Basar [13] defined the spaces X( ) and {(p) as the set of all
(),

sequences such that B(r, s)—transforms of them are in the spaces A(p) and ¢ respectively, where
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A€ {loo, ¢, 00}, that is

Zo\o(p) = {x = (zg) € w:sup |swp_1 + ro|Tt < oo} ,
keN
clp) = {:z: = (zg) Ew: klim |sxr_1+ rzg — £"* =0 for some £ € ]R} ,
—00
é6(p> = {aﬁ = (.Tk;) cw: khm |S.Z'k,1 —+ ’I“J,‘k|pk = O} R
hade el
Z(p) = {x = (k) Ew: Z |szr_1 + rap”* < oo} , (0<pp<H<o0).
k

In the case py = p for all £ € N the sequence space Z(p) is reduced to the sequence space Zp introduced
by Kirigci and Bagar [31].

Theorem 4.5. Aydin and Altay [8] and Aydin and Basar [13] obtained the following results:
(i) [8, Theorem 2.1] The spaces X(p) are the complete linear metric spaces paranormed by g, defined
by
g(x) = sup [szp_1 + rag/"™M .
keN
(ii) [8, Theorem 2.2] The sequence spaces é/o\o(p), ¢(p) and ¢y(p) of non-absolute type are linearly
isomorphic to the spaces L (p), c(p) and co(p), respectively, where 0 < pp < H < 0o.

o~

(iii) [13, Theorem 2.1] The space £(p) is a complete linear metric spaces paranormed by g, defined by

1/M
g(x) = <Z |szr—1 + r$k|pk> 7

k
where 0 < pp, < H < oo for all k € N.

(iv) [13, Theorem 2.2] The space £, is the linear space under the coordinatewise addition and scalar
multiplication which is the BK-space with the norm

1/p
|z = (Z |sTK—1 + m‘k|p> , 1<p<oo.
k

~

(v) [13, Corollary 2.3] The sequence space {(p) of non-absolute type is linearly isomorphic to the
space £(p), where 0 < pp < H < 0.

Yesilkayagil and Basar [60, 61] defined the Norlund sequence spaces N*(p) and A(N*,p) as the set of all
sequences whose Norlund transforms are in the spaces £(p) and A\(p), respectively, where A € {{, ¢, o},
as

N'(p) = {z=(zx) €Ew:Nzel(p)},
lo(Ntp) = {o=(z) €w: Naelo(p)},
¢(N',p) = {o=(2x)€w:Nzecc(p)},
c(N',p) = {z=(x) €w: Nz €cfp)}.

Theorem 4.6. Yesilkayagil and Basar [60, 61] obtained the following results:
(i) [60, Theorem 1] The space N*'(p) is a complete linear metric spaces paranormed by g, defined by

e\ 1/M

k
1
g(z) = E T E th_jr; with 0 < pp, < H < o0.
& =0

(ii) [60, Theorem 3] The Norlund sequence space N*'(p) of non-absolute type is linearly isomorphic
to the space £(p), where 0 < pp, < H < 0o for all k € N.
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(iii) [61, Theorem 2.1] The spaces A(N*,p) are the complete linear metric spaces paranormed by g,
defined by

pr/M

k
1
g(x) =sup|—=— E tp—i®;
( ) heN Tk = I3

(iv) [61, Theorem 2.2] The spaces loo(Nt,p), c¢(Nt, p) and co(N,p) of non-absolute type are linearly
isomorphic to the space Lo (p), c(p) and co(p), respectively, where 0 < p, < H < oo for all k € N.

Capan and Bagar [23] have defined the domain space ¢(F,p) of the band matrix F' in the sequence
e fr

space £(p) as
Pk
Tp—1 + <00 ,p.
Jr " e

If we take pi, = p for all k € N, the space ¢(F,p) is reduced to the space £, (F').

T

UF p) := {xz (rg) Ew: Z

k

Theorem 4.7. Capan and Basar [23] have obtained the following results:
(i) [23, Theorem 2.1] ¢(F,p) is a linear complete metric space paranormed by g defined by

o(z) = (Z S Jr

- fo T R

(ii) [23, Theorem 2.2] Convergence in £(F,p) is strictly stronger than coordinatewise convergence, but
the converse is not true, in general.

(iii) [23, Theorem 2.4] {(F,p) is a K—space.

(iv) [23, Theorem 2.5] £(F,p) is an F K —space.

(v) [23, Theorem 2.6] ¢,(F) is the linear space under the coordinatewise addition and scalar mul-

o\ /M
> with 0 < pr < H < o0.

1/p
tiplication which is a BK —space with the norm ||z|| = (zk: ‘—%xkq + fkfilxk‘p> , where
z€L,(F) and 1 <p < oo.

(vi) [23, Theorem 2.8] £,(F) is a Fréchet space.
(vii) [23, Corollary 2.1] The sequence space £, (F) of non-absolute type is linearly paranorm isomorphic

to the space £(p), where 0 < pp, < H < 0o for all k € N.

Benefiting from Basgar’s book [15], we give the following table for the concerning literature about the
domain A4 of an infinite matrix A in a Maddox’s space A:
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Table 1. The domains of some triangle matrices in Maddox’s spaces.

A A Aa refer to:
L (p), c(p), co(p) A Al (p), Ac(p), Aco(p) [1, 22, 44]
= (p) S bs(p) [14, 16]

(p) R' r*(p) [2]
Loo(p), c(p), co(p) R o (p), Te(p), 76(p) [4]
ls(p);c(p)ico(p) | G(u,v) | Loo(u,vsp),c(u, v5p), co(u, v;p) 3]
{(p) G(u,v) {(u,v;p) [5]
c(p), co(p) AT ac(v; p), ag(v; p) 9]
{(p) A" a” (v;p) (10]
oo (p), c(p), co(p) A" Loo (u, Asp), c(u, Asp), co(u, A;p) [7]
s (p), L(p) A" bves (u, A; p), bu(u, A; p) [18]
{(p) E e’ (p) [30]
loo(p), c(p), co(p) | B(r,s,t) (B, p),c(B,p), co(B,p) [19]
{(p) B(r,3) {(B,p) [56]
U (p), c(p), co(p) | B(T,3) lss (B, p), c(B,p), co(B,p) [59]
Lo (p), c(p), co(p) | B(r,s) oo (p), €(p), ¢ (p) (8]
{(p) B(r,s) £(p) [13]
{(p) N* N'(p) [60]
oo (p), ¢(p), co(p) N* loo(N*,p), c(N*,p),co(N*, p) [61]
£(p) r {(F,p) [23]

5. DUAL SPACES

For the sequence spaces A and p, the set S(A, 1) defined by

S\ p)={z=(z) €w:zz = (xgzr) € p forall z e},

(12)

is called the multiplier space A and p. One can observe that for a sequence space n with  C 7 C A that
the inclusions S(A, u) C S(n, ) and S(A, u) C S(A,n) hold. With the notation of (12), the alpha-, beta-
and gamma-duals of a sequence space \, which are respectively denoted by A*, \® and \7, are defined

by

A% = S(Aa€1)7

M =S\ es) and A\ = S()\, bs).

Let n € {a, 8,7} and let A be a sequence space. A is called a n—space if A = A", Further, an a—space
is also called a Kdthe space or perfect sequence space.
Define the sets M(p), Moo (p), Mo(p), K(p), S(p), L(p) and Q as:

{a = (ay) Ew: Z |ag |9 BTPr/0e < oo},
k
{a = (ay) Ew: Z|ak|Bl/p"' < oo} ,
k
{a = (ay) Ew: Z|ak|B_1/1”“ < oo} ,

S(p) =

M

B>1

N

B>1

U

B>1

A

B>1

{a:(ak)ew:

reN

k

max

27-Sk§2r+1
r

{a = (ar) € w:sup2”

max
27'§k§27'+1

|2T/pk‘ak\ < oo} 7

lag|PF < oo} ,
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r _ _ . rn—1\1/pk
(p) ﬂ {a (ax) Ew ZTSIE?;H(Q B7)YPrlag| < o0 p
B>1 r
Q = {p = (pr) € w : there exists a B > 13 ZB_l/pk < oo}a
k
00 k—1 n
V = ﬂ a€w: Z |ak| ZBl/pj converges and ZBl/p"|Gk| <00y,
B>1 k=1 j=1 k=1

where G, = > a, for all k € N.
v=k+1

Theorem 5.1. Let infyenpr = h and sup,cypr = H. Then, the following statements hold:

(i) [58, Theorem 7] The dual space of £(p) was shown in Simons [58] to be Ly (p) when 0 < p < 1.
(i) [35, Theorem 6] Let 0 < h < p, < 1 for all k € N. Then, the set K(p) is the dual space of w(p).

(iii) [35, Remark of Theorem 6] f(r) = > arxr defines an element of wf(p) without restriction
k
0 < h < pi, where x € wo(p) and a € K(p).

(iv) [36, Theorem 3] Let p € Q. Then, wi(p) is S(p).
(v) [36, Theorem 4] Let 0 < h < H < oo for all k € N. Then, ¢*(p) is £(q), where 1/pr +1/qr =1
for all k € N.

(vi) [36, Note of Theorem 4] cfj(p) = ¢1 when h > 0 and c{(p) = ls(p) when p € Q.

(vii) [38, Theorem 1] Let 1 < px < H for all k € N. Then, {{(p)}* = M(p).

(viii) [38, Theorem 2] Let 1 < py < H for all k € N. Then, £(p)* is isomorphic to M(p).
) [38, Theorem 3] If1 < h < H < oo for all k € N, then £(p) and M(p) are linearly homeomorphic.
) [38, Theorem 4] If 1 < pr < H < oo for all k € N and £(q) has its natural paranorm topology,

then £(p)* is linearly homeomorphic to ¢(q), where 1/py + 1/qr =1 for all k € N.

(xi) [38, Theorem 6] Let pr, > 0 for all k € N. Then, {co(p)}? = Mo(p) when H < oo, ci(p) is
isomorphic to My(p) and when in addition, h > 0, c}(p) is linearly isomorphic to 1.

(ix
(x

(xii) [34, Theorem 2] Let p, > 0 for all k € N. Then, {{(p)}? = Moo (p).

(xiii) [34, Theorem 4] Let 0 < py < 1 for all k € N. Then, {w(p)}’ = L(p).

(xiv) [33, Theorem 1] For every (px), {c(p)}? = {co(p)}? Nes.

(xv) [33, Theorem 2] For every (py), {co(p)}?? = Np1 {a € w : supy, |ay|BY/Px < oo}
(xvi) [33, Theorem 3] For every (pi), {¢e(p)}*? = Up~; {a € w : supy, |ay|B~1/PE < oo}
(xvii) [33, Theorem 6] The following statements are equivalent:

(1) h>0.
(2) {Lalp)}? = 1.
(3) {Loo(P)}? = los.
(xviii) [33, Theorem 7] The following statements are equivalent:

(1) {e@)}’ = leo-
(2) h>0.
(3) co C co(p)-
Theorem 5.2. The following statements hold:

(i) [33, Theorem 4(i)] Let p > 1 for all k € N. Then, {(p) is perfect if and only if p € l.

(i1) [33, Theorem 4(ii)] Let 0 < py <1 for all k € N. Then, £(p) is perfect if and only if £(p) = {1.
(iii) ([33, Theorem 5] and [1, Theorem 2.3]) £oo(p) is perfect if and only if p € lo.
(iv) [33, Theorem 8| co(p) is perfect if and only if p € cy.

Theorem 5.3. For every sequence (py), Ahmad and Mursaleen [1] gave the following results:
(i) [1, Theorem 2.1] {Als(p)}* = Npo1 {a €w: Y klay| B/ < oo}.
%
(ii) [1, Theorem 2.2] {Als(p)}* = Up~, {@ € w : supy, (K~ ay|)B~1/Pr < oo}
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(iii) [1, Remark of Theorem 2.2] (py), {Aco(p)}*™ = Np=q {a € w : supy (kY ar|)B/P* < oo},
Theorem 5.4. For every strictly positive sequence (pi) and for every u € U, Malkowsky [44], Asma and

Colak [7] and Basar and Altay [16] gave the following results:

k=1 j=1

< oo}.
(iii) [44, Theorem 2.1(c)] {Aco(p)}™ = Do = Up-q {a Cw: i |ak| kil B~pri < oo},

k=1 j=1

k—1 !
ST B7/Ps <00 .
j=1

(i) ([44, Theorem 2.1(a)] and [22, Theorem 1]) {Al(p)}* = N1 {a Ew: io: |ag] kil BY/Pi < oo}

k—1
S BY/Pi

Jj=1

(i) [44, Theorem 2.1(b)] {Aloo ()}’ = Up-, {a € w: supyss ||

(iv) [44, Theorem 2.1(d)] {Aco(p)}** = Nps1 {a € W : SUPg>y |ak]

(v) [44, Theorem 2.2(a)] {Ac(p)}® = Do N {a Ew: ki; klag| < oo}.
(vi) [44, Theorem 2.2(b)] {Als(p)}® = V.

(vil) [7, Theorem 2.1(i)] {loc(u, A, p)}* =Npoq {a Ew: zk: |la| kil BY?s Ju; < oo}.

Jj=1

k=1
(viii) [7, Theorem 2.1(ii)] {co(u,A,p)}* =D =g, {a Ew:Y lag| 3 BYPiju; < oo
% j=1

(ix) [7, Theorem 2.1(iii)] {c(u,A,p)}* =D U {a Ew: Xk: |a| kz_:i 1/u; < oo}.

(x) [7, Theorem 2.4] {lo(u, A,p)}’ =V with Ry, = i > ay for all k € N instead of Gy,.

v=k+1
(xi) [16, Theorem 2.3] {bs(p)}” = Moo(p) N\ 5=1 {a €w: > |Aay|BYPr < oo}.
%
(xii) [16, Theorem 2.3] {bs(p)}” = Np=1 {a €w: ) |Aay|BYPr < 0o and {ayBY/P} € co}
%
(xiii) [16, Theorem 2.3] {bs(p)}" = N1 {a €w: Y |Aay|BYPr < 0o and {ayBY/?} € (oo}.
%

Lemma 5.1. [6, Theorem 3.1] Let E = (e,) be defined via a sequence a = (ax) € w and the inverse
matriz V = () of the triangle matriz Q = (qni) by

n
>ajviy , 0<k<n,
enk = j=k
0 , otherwise

for all k € N. Then,

Aot ={a=(ar) ew:E€(X:0)},
Ao ' ={a=(ax) ew:Ee (X lx)}.

Following Altay and Basar [6], we can say that
Mot ={a=(ar) cw:Eec (X))},

under same conditions.
Define the inverses of the matrices given in (9), respectively, {Rt}_1 (rar)y {NT}" = (un),
1_

{Gu, )} = (han), {B(r,5)} 1 = (ban), {BED} T = () (AT} = (Gur)s F71 = (zan), {4} =
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(0nk); {B(r,s,6)} " = (&ur) and {E"} " = (3,) by

e L - —{ (-1)"*D, 4Tk, 0<k<n,
" 0 , otherwise ’ " 0 , k>n
(_1)7sz 1 . n—=k
ool G ometsksa, ()" o<k,
0 , otherwise 0 , otherwise
—1)"k —1 s —k_(1+k)
o =) SIS s 0<k<n, cn=4 OV mEae o nolsksn
0 , otherwise 0 , otherwise
2
up , 0<k<n, fon g <k<n,
Onk = - Znk = Jrfet1
0 , otherwise 0 , otherwise
n—k n—k—j J
1 s /57—ty s/ —dir
e ) T () () osksn
j=
0 , otherwise
S — (Z)(T—l)”_kr_k , 0<k<n
" 0 , otherwise
for all k,n € N, where Dy = 1 and
ty 1 0 0 ... 0
ts  t 1 0 ... 0
t3 to t1 1 ... 0
Dn = . . .
tn—l tn—2 tn—S tn—4 s 1
tn tnfl tn72 tn73 s tl

for n € {1,2,3,...}. Also, A™! = (s,,%) is as in (3).
Define the sets dq(p) — d14(p) as:

di(p) == Ups1 {a Ew:supy.

NeF k

Z anvnk371
neN

n 1
> ajvikB
j=k

k

<oo},
qk

<oo},
Pk

<oo},
Pk

<<>o}7

> anvnkBl/pk’ < oo} ,
neN

neN gk

d2(p) :== Upsq {a € w:sup),

ds(p) = {a) € w: sup sup’ 3 anUnk
NeFkeN [neN

n
ajVjk
k

dy(p) := {a € w: sup
k,neN

j=

ds(p) == N1 {a Ew:supy.
NEF &

dg(p) = ﬂ3>1 a€w:supy, |y, a;vjk BY/Pk < 50 ),

neN k |j=k
dr(p) == UB>1 {a Ew:supy.| > AU B~Y/Pr| < 00 b,

NeF n |keEN
istp) = {a € 3 [Sanvn] < oo}

n |k

do(p) == Upsy Ja €Ew:supd | > aju| B™YPr < ooy,
dio(p) == Nps1 {a cw:Iag) Ew> li_)m SIS ajvi — o | BYPr = 0} 7
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B~/pe < oo} ,

di1(p) :=Up=1 {a Ew:Iag) Ew> sugz
neN k

Z a;vii —a| =0

j=k

di2(p) == {a Ew: lim ),

n—oo k

n
> vk — o

j=k
= 0}7
<oo}.

Theorem 5.5. Taking rni, Cak, Onk> Onk, Enk, Onks Snk, Znk and Ung instead of vng, respectively, Altay
and Basar [2, 4], Aydn and Bagar 9, 10], Basar et al. [18], Kara et al. [30], Basar and Cakmak [19],
Aydin and Altay [8] and Aydn and Basar [13], Nergiz and Bagar [56] and Ozger and Basar [59], Capan
and Bagar [23], Yesilkayagil and Basar [60, 61] obtained the following results:

dis(p) == {a cw:3I o) Ew> lim Z a;vji — Ok

n
> ajvjk

neN g |j=k

di4(p) := {a € w:sup),

(i) [2, Theorem 2.7] Let 1 < py, < H < oo for all k € N. Then,
(a) {r'(®)}" = di(p).
) (@)} = ') = dop) ) U {a € w: {(@xTiB /1)) € b},
(i) [2, Theorem 2.8] Let 0 < py <1 for all k € N. Then,
(a) {r'(p)}" = da(p).
(b) (')} = (')} = fo € )0 f0nTi1") € ).
(iii) [4, Theorem 2.6] {r’, (p)}* = d5(p), {r ()}’ = ds(p) N Np=1 {a € w: {aTLBYP* /ty} € ¢}
and {rt,(p)}" = ds(p) N Np>1{a € w: {Aar/te)TB/P*} € U5}

(iv) [4, Theorem 2.6] {r(p)}" = dz(p) Nds(p), {ri(p)}ﬁ =do(p) Nes and {rt(p)}” = do(p) N bs.
(v) [4, Theorem 2.6] {rf(p)}" = dz(p) and {rf(p)}” = {ri(p)}" = do(p).

(vi) [9, Theorem 4.5] {af(p)}’ = {al(p)}? = do(p) ﬂBLi1 {a Ew: {ﬂ-ﬁ“ﬁakB_l/pk}keN € Koo}
and {ap(p)}* = dq(p).
(i) 9, Theorem 45] {aZ(s))* = dr(p)da(o), (ot} =t {a e {stt ), e

and {a%(p)}? = {af(p)}* N {a Ew: {W}%N € bs}.
(viii) Let 1 < pr, < H < o0 for all k € N. Then,
(a) [10, Theorem 3.4(ii)] {a" (u,p)}* = da(p).
.. r dk
(b) [10, Theorem 3.5(ii)] {a" (u,p)}? = d2(p) N BLil {a Cw: {((Hr’*)uh apB~ ) }kGN € Koo}.

(c) [10, Theorem 3.6(ii)] {a"(u,p)}” = {a” (u,p)}?.
(ix) Let 0 < pr <1 for all k € N. Then,

(a) [10, Theorem 3.4(i)] {a" (u,p)}* = ds(p).
(b) [10, Theorem 3.5(i)] {a”(u, p)}* = da(p) {a cw: {(ﬁ k) }keN c eoo}.
(c) [10, Theorem 3.6(i)] {a"(u,p)}” = {a”(u,p)}".
(x) [18, Theorems 3.4-3.5(1)] {bv(u,p)}* = dz(p), {bv(u,p)}’ = ds(p) Nes, {bv(u,p)}” = ds(p),

where 0 < pp <1 for all k € N.
(xi) [18, Theorems 3.4-3.5(ii)] {bv(u,p)}* = di(p), {bv(u,p)}’ = da(p) Ncs, {bv(u,p)}? = da(p),
where 1 < pp, < H < oo for all k € N.
(xii) [18, Theorem 3.6] {bvoo(u,p)}* = d5(p), {bvee(u,p)}? = ds(p) Ndio(p), {bves(u,p)}Y = ds(p).
(xiii) [30, Theorem 3] Let 1 < p, < H < 0o for all k € N. Then, {e"(p)}* = di(p).
(xiv) [30, Theorem 4] Let 1 < p, < H < oo for all k € N. Then, {e"(p)}" = da(p) and {e"(p)}? =

dz(p)ﬂ{GEW: > (1) (r — 1)7=kr=ia; exists for each k € N

j=k
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(xv) [30, Theorem 5] Let 0 < pr, < 1 for all k € N. Then, {e"(p)}* = ds(p), {€"(p)}” = da(p) and
{e"(p)}’ = da(p) N {a Ew:

) r— 1) "Fr=ia; exists for each k € N

(
(xvi) (19, Theorems 2.0-2.11] {£c(B. D1 — dalo), {Loe(B.D)Y = ds(p)Nd10(p), {€ac(B,p)}" = ds(p).
(i) 8, Corollary 2:1] {Z2x(p)}” = do(p) 1 io(p), ()} = (o), {2p)}” = dolp) 1 s ()

o(
di3(p), {co(p)}? = do(p), {c(p)}’ = do(p) N d11(p) Ndi12(p) N di3(p), {c(p)}” = dia(p).
(xviil) Let 1 < px < H < o0 for all k € N. Then,

(a) [13, Theorem 3.4] {{(p)}* = dy(p).
(b) [13, Theorem 3.5] {¢(p)}? = da(p) N Btil {a cCw: { zn:k (—f)n_k aj} € c}.
= neN
(c) [13, Theorem 3.6] {¢(p)}” = da(p).
(xix) Let 0 <py <1 for all k € N. Then,
(a) [13, Theorem 3.4] {¢(p)}* = d3(p).

(b) [13, Theorem 3.5] {¢(p)}? = {a € w:dg(p)N { ik (7%)7171@ aj} € c}.
J= neN

(¢) [13, Theorem 3.6] {¢(p)}” = d4(p). - N
(xx) [56, Theorems 10-12] Let 0 < pr < 1 for all k € N. Then, {¢(B,p)}* = ds(p), {£(B,p)}" = da(p),
{0(B,p)} = dy(p) N Z, where Z = {aew zk< 1n Sy u <oo}
(xxi) [56, Theorems 10-12] Let 1 < pk < H < o for allk € N. Then, {{(B,p)}* = di(p), {¢(B,p)}" =
da(p), {€(B,p)}’ = da(p) N N N
(xxii) [59, Theorem 41] {co(B, p)}o‘ = di(p), {co(B,p)}? = do(p), {co(B,p)}’ = do(p) N d1(p),
{C(B p)}* = dr(p)Nds(p), {c(B,p)}’ = do(p)Ndi1(p)Nes, {c(B,p)}T = do(p)Nbs, {loc(B,p)}* =
d5(p), {lso(B,p)}’ = dg(p) Nes, {los(B,p)}" = ds(p)-
(xxiii) [23, Theorems 3.4-3.6] Let 0 < px, < 1 for all k € N. Then, {{(F,p)}* = ds(p), {{(F,p)}" =
da(p), {L(F,p)}’ = da(p) N di3(p).
(xxiv) [23, Theorems 3.4-3.6] Let 1 < py, < H < oo for allk € N. Then, {{(F,p)}* = da2(p), {{(F,p)}" =
da(p), {L(F,p)}’ = da(p) N di3(p)-
(xxv) [60, Theorem 8] Let 1 < p, < H < oo for all k € N. Then, {N'(p)}* = di(p), {N'(p)}*}" =
da(p), {N*(p)}*}’ = da(p) N cs.
(xxvi) [60, Theorem 9] Let 0 < pp < 1 for all k € N. Then, {Nt(p)}* = d3(p), {Nt(p)}" = du(p),
{Nt(p)}ﬁ =ds(p) N{a € w: {(anTy)P*} € b}
(xxvii) [61, Theorem 3.4] {£oo(N*,p)}* = d5(p), {loo(Nt, )} = ds(p), {€oo(Nt,p)}’ = dg(p) N dio(p),
{co(N*,p)}* = d7(p), {co(N*,p)}? = dy(p), {co(N',p)}’ = do(p) N dr1(p) Nes, {c(N',p)}* =
dz(p) Ndg(p), {e(N*,p)}7 = do(p) N dra(p), {c(N,p)}? = do(p) N d11(p) N dra(p) Nes.

It is known that the matrix domain A4 of a sequence space A has a basis if and only if A has a basis
whenever A = (a,) is triangle, [29]. Let A(p) be any Maddox’s space, A = (anx) be an infinite matrix
and denote A~! = (a,}) with the inverse of A, where A € {£,, co,c}. Then, the following Theorem holds:

Theorem 5.6. Define the sequence b'*) = {b%k)}neN of the elements of the space (A(p))a for every fized
ke N by

b — 1. (13)
Then,

(i) the sequence {b"®)}ren is a basis for the space (\(p))a and any x € (A(p))a has a unique repre-
sentation of the form
T = Z akb(k),
k

where ag, = (Ax)y for allk € N, 0 < pr, < H < o0 and A € {{,,co}.
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(ii) the set {9,0%)}en is a basis for the space (c(p))a and any x € (c(p))a has a unique represen-
tation of the form

w=00+Y oy — (06",
k

where ¥ = (V1) with 9 = (A71e) for all k € N and £ = limy_, o0 (AZ)g

Using Theorem 5.6 and taking 7.k, hnk, Cuk, Onk, Onk, Enks Onks Snk, Znk and uy,y instead of a,j in
(13), respectively, Altay and Basar [2, 4] ,Altay and Basar [3, 5], Aydn and Bagar [9, 10], Basar et al.
[18], Kara et al. [30], Bagar and Cakmak [19], Aydin and Altay [8] and Aydn and Basar [13], Nergiz and
Basar [56] and Ozger and Basar [59], Capan and Bagar [23], Yesilkayagil and Basar [60, 61] obtained the
basis of the spaces rt(p), 7§(p), rt(p); co(u,v,p), c(u,v,p), £(u,v,p); a"(u,p), ay(u,p), a’(u,p); bv(u,p);

~

e’ (p); co(B,p), (B, p); L(p), Go(p), E(p); £(B,p), co(B,p), ¢(B,p); U(F,p); N'(p), Loc(N*,p), respectively.

6. MATRIX TRANSFORMATIONS

In this section, we give a list of characterizations of matrix transformations between Maddox’s sequence
spaces.

Let A, p be any two sequence spaces and A = (anx) be an infinite matrix of complex numbers a,,
where k,n € N. Then, we say that A defines a matriz transformation from A into u and we denote it by
writing A : A — p, if for every sequence x = (xj) € A the sequence Az = {(Azx), }, the A-transform of z,
is in p; where

(Ax), = Zankxk for each n € N. (14)
k

By (X : ), we denote the class of all matrices A such that A : A — u. Thus, A € (A : p) if and only if
the series on the right side of (14) converges for each n € N and every « € A, and we have Az € p for all
T E N

Let B and M denote the natural numbers and define the sets K; and Ky by K; = {k € N: p, < 1}
and Ko = {k € N: py > 1}. We suppose that p = (px),q¢ = (¢x) € € and g > 0 with 1/px + 1/qr = 1
for all k € N. Consider the following conditions:

dn
sup (sup|an;€|B_1/p’“) < oo for some B >1, (15)
neN \keN
an
lim limsup (sup |ank|Bl/”’“> =0, (16)
B—oo p—oo kEN
an
I(ag) € w such that lim limsup <sup |ank — ozk|Bl/pk> =0, (17)
B—0oo n—oo keN
sup sup |a, x| B~Y/P* < 0o for some B > 1, (18)
neN keN
an

sup (Z |ank|B1/p’“> < oo forall B>1, (19)

neN X
supz @ BYPE < 0o forall B> 1, (20)
neN"p

qn
3(ax) € w such that  lim (Z |k — ak|Bl/Pk> =0 forall B> 1, (21)
n—oo &
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an
lim <Z|ank|Bl/1”“> =0 forall B>1,
k

n—oo
E ankBl/Pk
keN

qn

Grn > 1 for all n and for all B > 1 sup Z
NeF

< 00,

n

an
3B > 1 such that sup (Z |a/nkB—1/pk> < o0,
neN \ ‘G

3B > 1 such that supz |ank|B*1/pk < o0,
neN 7

VM,3B >1 and 3(ax) € w such that sup Z |y — ag| MY/ B=YPE < oo,

neN kEK,

I(ag) € w such that lim |apk — ag|™ =0 for all k € N,
n—oo

VM,3dB > 1 such that supz |ank|M1/q"B’1/p’€ < 00,
neN L

li_>m lank|® =0 for all kK € N,

Z B 1/Px

dn

dB > 1 such that sup
2

< oo for all ¢, > 1,

n |keEN
qn
sup Ak < o0
an
da € C such that lim Za”k —a| =0,
n—oo
k
q’VL
lim =
k
qn
Z Zank < oo forall ¢, >1,
n k
dk
dB > 1 such that sup Z Z anyB7l < o0,
NEF LKy IneN
Pk
sup sup ank| < 00,
NeFkeK: | n

3B > 1 such that sup Z |ankB—l|Qk < o0,
neN kEKs
sup sup |ang[P* < oo,
neNke K,
Z |ank|Bl/Pk < oo converges uniformly in n for all B > 1,
k
I(ag) € w such that lim a,, = oy for all k € N,
n—oo

25

(22)

(36)
(37)
(38)
(39)

(40)
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lim a,r =0 for all k € N, (41)
n—oo

Jim ankBYP* =0 for all n € N, (42)
nh_)n;o Za”k = « exists , (43)
sup sup |an, B [Pk < oo, (44)
neNkeK;

VM,3B > 1 such that sup Z | MY/ B~ < oo, (45)

neN kER,
(o) € w such that sup sup (Jane — | BY9 )Pk < 0o for all B > 1, (46)
neN keK;
VM,3B >1 and J(ay) € w such that sup Z (lank — ak|M1/q"B hae < oo, (47)
neN kEKo

sup sup |an;cB_1/q"|p’“ < 00, (48)
neN ke K,

sup Z |apk B~ % < oo (49)
neNpek,

Lemma 6.1. Let A = (anr) be an infinite matriz and 0 < p, < 1 for all k € N and ¢ = (qi) be
bounded. Then, the following statements hold:
(i) [42, Theorem 5(i)] A € (¢(p) : £o(q)) if and only if (15) holds.
(ii) [42 Theorem 5(ii)] A € (4(p) : co(q)) if and only if (16) and (29) hold.
(iii) [42, Theorem 5(iii)] A € (¢(p) : ¢(q)) if and only if (17), (18) and (27) hold.
(iv) [42, Theorem 6] Let ¢ = (qx) € co. Then, A € (¢(p) : co(q)) if and only if (17) holds.
Lemma 6.2. Let A = (ank) be an infinite matriz and 1 < py, < H for allk € N and 1/p + 1/sp =1
and let ¢ = (qx) be bounded. Then, the following statements hold:
(i) [42, Theorem 7] A € (4(p) : xo(q)) if and only if

supz |api |5 B~/ < oo for some B > 1.
neN
k

(ii) [42, Theorem 8] A € (¢(p) : co(q)) if and only if (29) holds and for every D > 1

n
lim limsup <Z |anksszk/q"B_sk> =0 for some B > 1.
k

B—0oo p—o00
(iii) [42, Theorem 9] A € (¢(p) : ¢(q)) if and only if (27) holds and

suEZ\a k|**B7°% < oo for some B > 1,
ne

an
I(ag) € w such that hm lim sup (Z |ank — ak|s’“DS’f/q"B_sk> =0 forall D>1.
B—oo psoo &
Following Maddox and Willey [42], Grosse-Erdmann [26] redefined the matrix classes (¢(p) : A(q)),
where A € {{, co, ¢) and gave the following results:
Lemma 6.3. Let A = (ani) be an infinite matriz. Then, the following statements hold:

(i) [26, Theorem 5.1.15] A € (Yo(p) : oo(q)) if and only if (19) holds.
(i) [26, Theorem 5.1.11] A € (¢os(p) : ¢(q)) if and only if (20) and (21) hold.
(iii) [26, Theorem 5.1.7] A € (Lo (p) : co(q)) if and only if (22) holds.

) [
) [ (p

(iv) [26, Theorem 5.1.3] A € ({s(p) : £(¢)) if and only if (23) holds.

(v) [26, Theorem 5.1.13] A € (co(p) : xo(q)) if and only if (24) holds.

(vi) [26, Theorem 5.1.9] A € (co(p) : ¢(q)) if and only if (25)-(27) hold.

(vii) [26, Theorem 5.1.5] A € (¢o(p) : co(q)) if and only if (28) and (29) hold.
) [ ) : ¢(q)) if and only if (30) holds.

(viii) [26, Theorem 5.1.1] A € (co(p
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(ix) [26, Theorem 5.1.14] A € (c(p) : Lxo(q)) if and only if (24) and (31) hold.
(xx) [26, Theorem 5.1.10] A € (c(p) : ¢(q)) if and only if (25)-(27) and (32) hold.
(xi) [26, Theorem 5.1.6] A € (¢(p) : co(q)) if and only if (28), (29) and (33) hold.
(xii) [26, Theorem 5.1.2] A € (c(p) : ¢(q)) if and only if (30) and (34) hold.
(xiii) [26, Theorem 5.1.4] A € (¢(p) : ¢o(q)) if and only if (29), (44) and (45) hold.
(xiv) [26, Theorem 5.1.8] A € ({(p) : c(q)) if and only if (27), (37), (38), (46) and (47) hold.
(xv) [26, Theorem 5.1.8] A € (4(p) : ¢=o(q)) if and only if (48) and (49) hold.

Lemma 6.4. The following statements hold:

(i) [26, Theorem 5.1.0 with g, = 1] A € (¢(p) : ¢1) if and only if (35) holds, where 1 < p, < H < 00
for all k € N.
(i) [26, Theorem 5.1.0] A € (¢(p) : £1) if and only if if and only if (36) holds, where 0 < p, < 1 for
all k e N.
(iii) ([34, Theorem 1(i)] and [26, Proposition 3.2(i)]) A € (¢(p) : £~ ) if and only if (37) holds, where
1<pr, <H<ooforall keN.
(iv) ([34, Theorem 1(ii)] and [26, Proposition 3.2(i)]) A € (£(p) : ) if and only if (38) holds, where
0<pr <1forall keN.
(v) [34, Corollary of Theorem 1] A € (¢(p) : ¢) if and only if (37), (38) and (40) hold, where
0<pr < H for all Kk € N.
(vi) [34, Theorem 3] A € ({oo(p) : o) if and only if (20) holds.
(vii) [34, Corollary of Theorem 3] A € ({5 (p) : ¢) if and only if (39) and (40) hold, where 0 < p, < H
for all k € N.
(viii) [33, Theorem 9] A € (¢(p) : ¢) if and only if (25), (40) and (43) hold, where p € £,
(ix) [33, Theorem 9] A € (co(p) : ¢) if and only if (25) and (40) hold, where p € £,
(x) [34, Theorem 5] Let 0 < py, < 1. Then, A € (w(p) : ¢) if and only if (42) and (43) hold and

3B > 1 such that supZmax( (2"B~ )1/p’“|ank|) < 00.
neN

Theorem 6.1. Let 0 < pr < sup, px < oo for all k € N. Then, Nanda [53, 54, 55] gave the following
results:

(i) A € (co(p) : fo(p)) if and only if

Pm
3B > 15 sup (Z la(n, k,m)|B~ Up’“) < oo forall neN, (50)
meN

day € C for all ke N> lgn la(n, k,m)|P™ = ai uniformly in n.

(ii) A € (c(p) : f) if and only if

EB>195upZ\ank‘m)|B Upk < o0 for all n €N, (51)
meN
Joy, € C for all ke N> lim a(n,k,m) = oy uniformly in n, (52)
m—r o0
JaeC> n}gnoo Z n,k,m) = o uniformly in n. (53)

(iil) A€ (boo(p) : f) if and only if (52) holds, and

iB>15 li_r>n Z la(n, k,m) — ai|BYP* = 0 uniformly in n (54)

sup a(n, k,m)| < co.
mENZI )|
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(iv) A€ (Up): f) if and only if (52) holds and

3B>195up2\ank’m)|%B * < oo, ifpp > 1, (55)
meN

sup |a(n,k7m)|p’“ <oo, if0<pp<Ll (56)

m,keEN

(v) Ae (Up): fo) if and only if (52) is satisfied with o, =0 for all k € N and (55), (56) hold.
(vi) Let 0 <pr <1 for all k € N. Then, A € (w(p) : f) if and only if (52) and (53) are satisfied and

sup Zmax (22B~HY/Pr|a(n, k,m)| < co.
meN

(vi)) A € (boo(p) : f) if and only if

su a(n,k,m BYPr < 50 forall B> 1.
pZI

m,neN

~

(viii) A € (co(p) : f(p)) if and only if (50) holds,

where

a(n,k,m) = —— Cpti b
i=0
for all k,m,n € N.
Theorem 6.2. Let A = (an) be an infinite matriz, let r = (ry,) be bounded and denote a(n, k) = i ik
for all m,k € N. Basar [14] gave the following matrixz classes:
(i) [14, Theorem 1(i)] Let 0 < py < 1 for all k € N. Then, A € (£(p) : f(r)) if and only if

)
3B >1 such that sup (|a(n,k,m)|B~YP*)™ < .
n,k,meN

(i) [14, Theorem 1(ii)] Let 1 < py < oo for all k € N and 1/py, +1/qx, = 1. Then, A € ({(p) : f(r))
if and only if

dB > 1 such that sup Z la(n, k,m)|?™ B~ /T < oo,
n,meN

(iii) [14, Theorem 2(i)] Let 0 < py <1 for all k € N. Then, A € ({(p) : bs(r)) if and only if

m Tn
Z a(n+1i,k) l/pk> < 00.
=0

(iv) [14, Theorem 2(ii)] Let 1 < py < oo for all k € N and 1/py + 1/qx = 1. Then, A € ({(p) : bs(r))
if and only if

iB >1 h that
such tha sup <m+1

n,k,meN

qk
BT/ < oo,

m

dB > 1 such that sup Z +lza n+1,k)
m

n,meN

o~

(v) [14, Theorem 4] A € (co(p) : f(r)) if and only if

3B > 1 such that sup (Z la(n, kym)|B—1/pk> < 0.
n,meN A

(vi) [14, Theorem 5] A € (co(p) : 5:9(7’)) if and only if

a(n+1i,k)
n,meN

dB > 1 such that sup <Z
k

Tn
Bl/pk> < 0.
’i:0
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(vii) [14, Theorem 5] A € (co(p) : bs(r)) if and only if

dB > 1 such that sup (Z la(n, k)| B~ Up’“) < 0.
neN

Theorem 6.3. Let A = (ank) be an infinite matriz. Basar and Altay [16] gave the following results:
(i) [16, Theorem 3.1] A € (bs(p) : Lo(q)) if and only if (19) holds with jni = Aany instead of ank
and (42) is satisfied.
(ii) [16, Theorem 3.2] A € (bs(p) : bs( )) if and only if (19) and (42) hold with jni = Aa(n, k)
instead of any, where a(n, k) = Z it -
b

(iii) [16, Corollary 3.3] A € (bs(p) : Oo) if and only if (42) is satisfied and (20) holds with jni = Aank
instead of any.

(iv) [16, Corollary 3.4] A € (bs(p) : bs) if and only if (20) and (42) hold with jnr = Aa(n, k) instead
of ang-

(v) [16, Theorem 3.5] A € (bs(p) : f) if and only if if and only if (20) is satisfied with jnr = Aank
instead of ank, and (52) and (54) hold with Aa(n,k,m) instead of a(n,k,m).

(vi) [16, Theorem 3.7] A € (bs(p) : ¢) if and only if if and only if (39), (40) and (42) hold with
Jnk = Aapk instead of ang.

Lemma 6.5. [31, Theorem 4.1] Let A be an FK—space, E = (eni) be triangle, V. = (vnr) be its
inverse and p be arbitrary subset of w. Then, we have A € (Ag : p) if and only if

Q™ =(¢")e(\:e)forallneN

and
Q - (an) € ()‘ :u)v

where

i 0

n apvjk , 0< k< m,
qmlz = j=k 7 and g = Zanjvjka (57)
0 , k>m Jj=k

k,m,n € N.

Theorem 6.4. Let pi > 0 for all k € N. Then, Ahmad and Mursaleen [1] gave results:
(i) [1, Theorem 3.3] A € (Al (p) : loo) if and only if (20) holds with qni, = k|ank| instead of any.
(ii) [1, Theorem 3.4] A € (Als(p) : ¢) if and only if (40) holds and (39) holds with qni = k|ank|
instead of ang.

Using Lemma 6.5., we give following results:

Theorem 6.5. The following statements hold:
(i) [2, Theorem 3.1(i)] Let 1 < py, < H < oo for all k € N. Then, A € (r*(p) : {s) if and only if
(1) {(z2Qn B*l)%}k €t for alln €N.
eN

(2%) (37) holds with gn = Z anjTjk instead of ang.

(i) [2, Theorem 3.1(ii)] Let O < Pr < <1 for allk € N. Then, A € (r'(p) : {) if and only if
(3%) (38) holds with gn = Z An Tk instead of anp.
j=k

(iii) [2, Theorem 3.4] Let 0 < pp < H < oo for all k € N. Then, A € (r'(p) : ¢) if and only if
(1%)-(3%) hold and there exists a sequence (ay) of scalars such that
(4%) lim A (M) T, =0 for all k € N.
n—oo

(iv) [2, Theorem 3.5] Let 0 < pp < H < oo for all k € N. Then, A € (r*(p) : o) if and only if
(1%)-(4*) hold.



30 TWMS J. PURE APPL. MATH., V.10, N.1, 2019

(v) [2, Theorem 3.2(i)] Let 1 < pr < H < oo for all k € N. Then, A € (r*(p) : bs) if and only if (1%)

is satisfied with a(n, k) instead of any, and (87) holds with j,r = A [%} Q. instead of anp.

(vi) [2, Theorem 3.2(ii)] Let 0 < py < 1 for all k € N. Then, A € (r'(p) : bs) if and only if (38) holds

with jor = A {%] Q1 instead of any.

(vil) [2, Theorem 3.4(i)] Let 0 < pr < H < oo for all k € N. Then, A € (r'(p) : ¢s) if and only if
(87) and (38) are satisfied with jni = A [%} Q. instead of ang and (17*) and (4%*) hold with
a(n, k) instead of ang.

(viii) [2, Theorem 3.4(ii)] Let 0 < px < H < oo for all k € N. Then, A € (r'(p) : cso) if and only if
(37) and (38) are satisfied with jnr, = A [%] Qy, instead of ang and (1%*) and (4*) hold with
a(n, k) instead of any and with ap, =0 for all k € N.

(ix) [4, Theorem 4.3(1)] A € (rl(p) : loo(q)) if and only if (19) holds with gnx, = > an;rjk instead
j=k
of ank and
(5%) (42) holds with ryy instead of an.

(x) [4, Theorem 4.3(iv)] A € (r'.(p) : €(q)) if and only if (5%) holds and (23) holds with g, =

> anjrik instead of an.
j=k

(xi) [4, Theorem 4.3(vii)] A € (r' (p) : c(q)) if and only if (5%) holds and (20)-(21) hold with
Onk = ) QnjTjk instead of ang.
j=k
(xii) [4, Theorem 4.3(x)] A € (ri.(p) : co(q)) if and only if (5%) holds and (21) holds with g, =

> anjTik instead of any and with oy, =0 for all k € N.
j=k

(xiii) [4, Theorem 4.4(i)] A € (ri(p) : lx(q)) if and only if (5%) holds and (24), (31) hold with

Onk = ) QnjTjk instead of ang.
j=k
(xiv) [4, Theorem 4.4(iv)] A € (rl(p) : £(q)) if and only if (5%) holds and (30), (34) hold with g,i =

Gn;jTik instead of ang.
i—k

j=

(xv) [4, Theorem 4.4(vii)] A € (rt(p) : ¢(q)) if and only if (5%) holds and (25)-(27) and (32) hold with

Onk = ) QnjTjk instead of ang.
j=k
(xvi) [4, Theorem 4.4(x)] A € (ri(p) : co(q)) if and only if (5*) holds and (26), (27) and (32) hold
With Gni = Y, anjTjk instead of any, and with oo =0, oy, = 0 for all k € N.
j=k
(xvii) [4, Theorem 4.5()] A € (r§(p) : Leo(q)) if and only if (5%) holds and (24) holds with g, =

o0
Y- anjrjk instead of an.
i—k

j=

(xviii) [4, Theorem 4.5(iv)] A € (r§(p) : €(q)) if and only if (5%) holds and (30) holds with qnr =

Y- anjrjk instead of ap.
j=k
(xix) [4, Theorem 4.5(vii)] A € (r§(p) : c(q)) if and only if (5%) holds and (25)-(27) hold with qnx =
Y- anjrjk instead of an.
j=k

(xx) [4, Theorem 4.5(x)] A € (rh(p) : co(q)) if and only if (5%) holds and (26) and (27) hold with

Gnk = Y Qn;Tjk instead of ank and with a, =0 for all k € N.
=k

(xxi) [9, Corollary 5.2] A € (af(u,p) : €oo(q)) if and only if (24) holds with gk = D an;Cjk instead of
=k
ank and

* k+1 -1/
(6%) {(1+7‘k)uk QAp B~ 1/Pk }kEN €c for alln € N,
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(xxii) [9, Corollary 5.3] A € (af(u,p) : ¢(q)) if and only if (6*) holds and (25)-(27) hold with g =

> anjCik instead of ang.
i=k

(xxiii) [9 Corollary 5.4] A € (af(u,p) : co(q)) if and only if (6*) holds and (27), (28) hold with qni, =

Z an; Gk instead of ang.
=k

(xxiv) [9, Corollary 5.5] A € (aj(u,p) : £(q)) if and only if (6*) holds and (30) hold with ¢y = > an;Cjk
j=k

instead of ang.
(xxv) [10, Theorem 4.1(i)] Let 1 < pp < H < oo for all k € N. Then, A € (a"(u,p) : so) if and only if

(87) holds with ¢ = Y an;Cjx instead of ank and
=k
(bt ‘
(7%) {((1+7k)uk ank B~ ) }keN € ly for allm € N.
(xxvi) [10, Theorem 4.1(ii)] Let 0 < pr, <1 for all k € N. Then, A € (a”"(u,p) : {s) if and only if (38)

holds with qni = Y an;Ck instead of ani and
=k

Pk
(8%) {(&ﬁ%k) k}keN €l for alln € N.
(xxvii) [10, Theorem 4.2] Let 0 < p, < H < oo for all k € N. Then, A € (a"(u,p) : ¢) if and only

if (7%), (8%) hold and (37), (38) hold with gni = Z an;Cjk instead of any and (27) holds with

Qnk = Z GGk nstead of anr and with g, =1 for alln € N.
j_
(xxviii) [10, Corollary 4.3] Let 0 < py, < H < oo for all k € N. Then, A € (a"(u,p) : co) if and only
if (7%), (8*) hold and (37), (38) hold with gnx = Y an;(ji instead of any and (33) holds with
j=k

Qnk = Z an;Cik instead of any and with o, = 0 for all k € N.
(xxix) [3, Thfa;rem 3.1] Let p be any given sequence space. Then, A € (A(u,v,p) : ) if and only if
Q € (M(p) : p) and Q™ € (\(p) : ¢), where guy = i anjhjr and QM = (qf;bl,z) is as in (57).
(xxx) [18, Theorem 4.1(i)] Le;fol <pr < H < oo for all é=€k N. Then, A € (bv(u,p) : {) if and only if

(87) holds with ¢ni = Y anjo;k nstead of any and

(9%) {ank}pen € d2(p) Nes for alln € N.
(xxxi) [18, Theorem 4.1(ii)] Let 0 < pr <1 for all k € N. Then, A € (bv(u,p) : ) if and only if (38)
holds with g,y = Z an; 05k instead of any and
=k
(10*) {ank} ey € da(p) Nes for alln € N.
(xxxii) [18, Theorem 4.2] Let 0 < pp < H < oo for all k € N. Then, A € (bv(u,p) : ¢) if and only if
(9%), (10*) hold and (37), (38), (40) hold with gnr = > anjoji instead of any.
j=k
(xxxiii) [18, Corollary 4.3] Let 0 < pr, < H < oo for all k € N. Then A € (bu(u,p) : co) if and only if

(9%), (10%*) hold and (37), (38) and (41) hold with g, = Z an; 04k instead of ang.
(xxxiv) [19, Theorem 3.1] Let p be any given sequence space. Then A e ( (B,p) : ) if and only if
Q< (A\p): p) and QM € (A(p) : ¢), where gur, = > an;€jn and Q" (qug) is as in (57).
j=k

~ o0
(xxxv) [8, Theorem 3.2(1)] A € (boo(p) : lso) if and only if (20) holds with g, = ) an;bji instead of
=k

Ank-
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-~ o0
(xxxvi) [8, Theorem 3.2(ii)] A € ({xo(p) : ¢) if and only if (39) and (40) hold with g¢nix = Y an;bjk
j=k
instead of any.

(xxxvii) [8, Theorem 3.2(ii)] A € (Zoo(p) s co) if and only if (22) holds with qui = > anjbji instead of
j=k
ank and with q, =1 for all n € N.
(xxxviii) [8 Theorem 3.3(1)] A € (¢o(p) : loo(q)) if and only if (24), (26) and (30) hold with qni =

Z an;bji instead of ang.
=k

(xxxix) [8 Theorem 3.3(i1)] A € (Go(p) : colq)) if and only if (24), (26), (29) and (28) hold with

qnk = Z anjbji instead of any.
Jj=k

(x1) [8, Theorem 3.3(iii)] A € (¢o(p) : ¢(q)) if and only if (24)-(27) hold with ¢ = i an;bji instead
of amp. =
(xli) [8, Theorem 3.4(1)] A € (€(p) : loo(q)) if and only if (24), (26), (30), (31) and (43) hold with
Ink = Z anjbji instead of ang..
(xlii) [8, Theorem 34(11)] A € (€p) : co(q)) if and only if (24), (26), (29), (28), (33) and (43) hold
with Gy, = Z anjbji instead of ang.
(xliii) [8, Theorenjl:g.ll(iii)] A € (Cp) : c(q)) if and only if (24)-(27), (32) and (34) hold with qn, =
i anjbjk instead of any.
(xliv) El_Bk Theorem 4.1]) Let 0 < py <1 for all k € N. Then, A € (A(p) 1 lso) if and only if (38) holds
with g = Zk anjbj instead of ank and {ank} ey € {é(p)}ﬁ.
(xIv) [13, Theorejm 4.1] Let 1<pr<H<oo foralkeN. Then, A€ (I(p): s) if and only if (37)

B
holds with g,y = Z anjbj instead of ank and {ank} ey € {é(p)} .
j=k

(xIvi) [13, Theorem 4.2] Let 0 < pp < H < oo for all k € N. Then, A € (Z(p) : ¢) if and only if
~ B 00
{ank}pen € {K(p)} and (37), (38) and (40) hold with qnr, = Z anjbji instead of ang.
(xlvii) [13, Corollary4.3] Let 0 < pr, < H < oo for all k € N. Then A e (Z( ) : ¢o) if and only if
B
{ank}pen € {é(p)} and (37), (38) and (41) hold with qni = Z an;bji instead of ang.
j=k
(xlviii) [56, Theorem 13(i)] Let 1 < py < H < oo for all k € N. Then, A € ({(B,p) : {s) if and only if
(87) holds with qni = Z anjSjk instead of ani and

(11*) Z %H; }ff‘]anz < 00 fOT alln (S N
(xlix) [56, Theorem 13(ii)] Let 0 < py <1 for all k € N. Then, A € ((B,p) : leo) if and only if (11 *)

holds and (38) holds with gnk = > anjSjk instead of ang.
j=k
(1) [56, Theorem 15] A € (E(B\,p) 2 f) if and only if Q € (£(p) : f) and Q™ € (L(p) : ¢), where
Gnk = Y. anjsjk and QM) = (qfn,z) is as in (57).
j=k
(Ii) [56, Theorem 16] Let 0 < pp, < H < oo for all k € N. Then, A € ({(B,p) : ¢) if and only if
—~ B %)
{ank}pen € {E(B,p)} and (37), (38) and (40) hold with qnr = Y anjS;k instead of an.
j=k
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(lii) [56, Corollary 17] Let 0 < pr < H < oo for all k € N. Then, A E (U(B,p) : co) if and only if
B
{ank}pen € {K(B p)} and (37), (38) and (41) hold with qnr, = Z an;S;k instead of ang.
jf

(liii) [23, Theorem 4.1(i)] Let 1 < pr < H < oo for all k € N. Then, A € (((F,p) : ) if and only if
(38) holds with gni, = Y, anjz;i instead of any and
=k

(12%) Z fkal apn; < 0o for allm € N.
(liv) [23, Theorem 4.1(1)] Let 1 < pp < H < oo for all k € N. Then, A € (L(F,p) : ls) if and only if
(12%) holds and (37) holds with qnx = § anjzjk instead of anj.
(Iv) [23, Theorem 4.2(i)] Let 0 < pp < H i_;co for all k € N. Then, A € (U(F,p) : c¢) if and only if
(12%) holds and (38), (40) hold with ¢ni, = Z an;jzjk instead of ang.

(lvi) [23, Theorem 4.2(ii)] Let 1 < pp < H < o0 for all k € N. Then, A € (((F,p) : ¢) if and only if
(12%) holds and (37), (40) hold with qni, = Z an;jzji instead of ang.

(lvii) [23, Corollary 4.3(i)] Let 0 < p < H < o0 for all k 6 N. Then, A € ({(F,p) : co) if and only if
(12%) holds and (38), (40) and (41) hold with qni = Z an;zjk instead of ang.
j=k

(lviii) [23, Corollary 4.3(ii)] Let 1 < py, < H < o0 for all k eN. Then, A € (L(F,p) : co) if and only if
(12%) holds and (37), (40) and (41) hold with qni = Z an;zjk instead of ang.
Jj=

(lix) [60, Theorem 10] Let w be any given sequence space. Then, A € (Nt( ) : ) if and only if

{ank}pen € {Nt(p)}ﬂ and Q € (U(p) : p), where Q = (qnk) S Gnk = Z an;&k for all n,k € N.
j=k

(Ix) [61, Theorem 4.1] A € ({oo(N",p) : loo) if and only if {ank}rey € {loo(Nt, )} and (20) holds

with Gnik, = Y, anjuji instead of an.
j=k

(Ixi) [61, Theorem 4.4] A € (((N*,p) : ¢) if and only if {ank}ey € {leo(Nt, D)}’ and (39), (40)

hold with qni = Y, anjuj, instead of an.
j=k
(Ixii) [61, Theorem 4.4] A € (¢ (Nt,p) 2 co) if and only if {ank}ey € {EOO(Nt,p)}ﬁ and (39), (40)

and (41) hold with g, = Z an;ujk instead of ang.
=k
Theorem 6.6. Let a(n,k,m) = m+1 Z Qn+ik, where qni, = Z an;bjr for all n,k € N. Then, the
following statements hold: "
(i) [59, Theorem 5.8(i)] A € (c(B,p) : f) if and only if (51)-(53) hold with a(n,k,m) instead of
a(n,k,m).
(i) [59, Theorem 5.8(ii)] A € (co(B,p) : f) if and only if (51) and (52) hold with a(n,k,m) instead
of a(n,k,m) and Q™ € (co(p) : ¢), where Q™) = (qfff,z) is as in (57).
(iii) [59, Theorem 5.8(iii)] A € (fos(B,p) : f) if and only if (51), (52) and (54) hold with a(n,k,m)
instead of a(n,k,m) and Q™ € (fuo(p) : ¢), where Q™) = (qfs,z) is as in (57).
(iv) [59, Theorem 5.8(iv)] A € (los (B, p) : fo) if and only if (52) and (54) hold with a(n, k,m) instead
of a(n, k,m) and with oy, = 0 for all k € N and Q™ € (Lo (p) : ¢), where Q™) = (qfs,z) 18 as in
(57).

Lemma 6.6. [17, Lemma 5.3] Let A and p be any two sequence spaces, A be an infinite matriz and
B be a triangle matriz. Then, A € (A : pa) if and only if BA € (A: p). Using Lemma 6.6., the authors
mentioned above gave comprehensive matrix classes. Also, we have benefited from Malkowsky and Basar
[47] in this section.
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7. SOME GEOMETRIC PROPERTIES OF THE SPACE (\(p)) a

In Functional Analysis, the rotundity of Banach spaces is one of the most important geometric property.
For details, the reader may refer to [21, 24, 43]. In this section, we give the necessary and sufficient
condition in order to the space (A(p))a be rotund and present some results related to this concept, where
A(p) is any Maddox’s space and A = (a,y) is an infinite matrix.

Definition 7.1. Let S(X) be the unit sphere of a Banach space X. Then, a point x € S(X) is called
an extreme point if 2x = y + z implies y = z for every y,z € S(X). A Banach space X is said to be
rotund (strictly convez) if every point of S(X) is an extreme point.

Definition 7.2. A Banach space X is said to have Kadec-Klee property (or propert (H)) if every
weakly convergent sequence on the unit sphere is convergent in norm.

Definition 7.3. A Banach space X is said to have

(i) the Opial property if every sequence (x,,) weakly convergent to zo € X satisfies
liminf ||z, — z¢|| < iminf ||z, + z||
n—oo n—oo

for every z € X with z # zo.
(ii) the uniform Opial property if for each € > 0, there exists an r > 0 such that

1+ r <liminf ||z, + z||
n— oo

for each x € X with ||z|| > € and each sequence (1,,) in X such that x,, = 0 and liminf||z,,|| > 1.
n—oo

Definition 7.4. Let X be a real vector space. A functional o : X — [0, 00) is called a modular if
(i) o(z) =0 if and only if z = 6;
) o(ax) = o(z) for all scalars o with |a| = 1;
(iil) o(az + By) < o(x) + o(y) for all z,y € X and o, 8 > 0 with a + 8 = 1;
) the modular o is called convex if o(azx + By) < ao(z) + fo(y) for all z,y € X and «, § > 0 with
a+ =1,
A modular ¢ on X is called
(a) right continuous if ali}rrlha(ozx) =o(z) for all z € X,.
(b) left continuous if OLliﬁrrllia(cm) =o(x) for all x € X,.

(¢) continuous if it is both right and left continuous, where
X, = {xGX: lim a(ax)zO}.
a—0t

Let A(p) be any Maddox’s space and A = (a,x) be an infinite matrix. Define o, on a sequence space
(A(p))a by

op(z) =Y |(Az)l™ . (58)
k

If pp > 1forall k € N={1,2,...}, by the convexity of the function ¢ — [¢t|P* for each k € N, ¢, is a
convex modular on (A(p))a. Consider (A(p))a equipped with Luxemburg norm given by

lz|| = inf {a > 0: 0p(z/a) < 1}. (59)
(A(p))a is a Banach space with this norm.
Taking A", A, E", B(r,s), B(7,3) and Nt instead of A in (58), respectively, Aydn and Basar [10],
Bagar et al. [18], Kara et al. [30], Aydin and Altay [8] and Aydn and Basar [13], Nergiz and Bagar [56],
Yesilkayagil and Bagar [60] gave the following results:

Proposition 1. ([10, Proposition 5.1], [18, Proposition 5.1], [30, Proposition 2], [8, Theorem 4.1], [13,
Theorem 5.1], [56, Proposition 5], [60, Proposition 16]) The modular o, on a”(u,p) [bv(u,p), e"(p), Up),
oo (p), ((E,p), Nt(p), respectively| satisfies the following properties with py, > 1 for all k € N:

(i) If0 < a < 1, then aMo,(z/a) < o,(x) and op(ax) < aoy(z).

(ii) If a > 1, then op(z) < oMoy, (z/a).
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(iii) If o > 1, then aop(z/a) < op(x).
(iv) The modular o, is continuous.

Proposition 2. ([10, Proposition 5.2], [18, Proposition 5.3], [30, Proposition 3], [8, Theorem 4.2], [13,
Theorem 5.2], [56, Proposition 6], [60, Proposition 17]) For any = € a” (u,p) [bv(u,p), €"(p), U(p), lso(p),
((B,p), N*(p), respectively], the following statements hold:
() If lall < 1, then ay(x) < o]
(i) If [|lz[| > 1, then op(x) = ||z,
(iii) ||z|| =1 if and only if op(x) = 1.
(iv) |lz|| < 1 if and only if op(z) < 1.
(v) |lzl| > 1 if and only if op(z) > 1.
(vi) If 0 < a < 1 and ||z|| > a, then o,(z) > oM.
(vii) If a > 1 and ||z| < «, then o,(z) < oM.

Theorem 7.1. The following statements hold:

(i) [10, Theorem 5.1] The space a”(u,p) is rotund if only if pr > 1 for all k € N.
(i) [18, Theorem 5.4] The space bv(u,p) is rotund if only if pr, > 1 for all k € N.
(iii) [56, Theorem 8] The space Z(é,p) is rotund if only if pr > 1 for all k € N.
(iv) [60, Theorem 18] The space N*(p) is rotund if only if pr > 1 for all k € N.

Theorem 7.2. ([56, Theorem 9] and [60, Theorem 19])
Let () be a sequence in £(B,p) [or N'(p)]. Then, the following statements hold:

(i) lim ||z,| =1 implies lim op,(zy,) = 1.
n—oo n—0o0

(i) lim op(zn) =0 implies lim ||z, || = 0.
n—oo n— oo

Theorem 7.3. The sequence space N'(p) has the Kadec-Klee property.

(i) ([56, Theorem 12] and [60, Theorem 21]) The sequence space £(B,p) [N*(p)] has the Kadec-Klee

property.
(ii) ([56, Theorem 12] and [60, Theorem 21]) For any 1 < p < oo, the space (y)5 [(€p)] has the
uniform Opial property.

8. SOME PROBLEMS FOR RESEARCHERS

1. Investigate the domain of the Cesaro matrix C of order 1 in the following spaces;

(i) w(p),

(p)-

the matrix B = (gnk) by the composition of the matrices £, C; and A as

7 {(2) ’ nggnﬂ

> =

2. Defin

bpg := 1 2" (k+1)
0 , k>n

for all k,n € N. Investigate the domain of the matrix B in the paranormed spaces listed in
Problem 1.
3. Investigate the domain of the Riesz matrix R! in the paranormed spaces listed in Problem 1.

=

Investigate the domain of the Nrlund matrix N in the paranormed spaces listed in Problem 1.

5. Investigate the domains A(¢o(p)), A(e(p)), A(co(p)) and A(£(p)) of Abel method in the Maddox’s
spaces £oo(p), ¢(p), co(p) and £(p), respectively.

6. Investigate the domains S(4(p)), S(c(p)) and S(co(p)) of the summation matrix S in the Maddox’s

spaces £(p), ¢(p) and co(p), respectively.
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7. Investigate the domains F(¢(p)), F(c(p)) and F(co(p)) of double band matrix F in the Maddox’s
spaces £(p), ¢(p) and co(p), respectively.

8. Investigate the domains A(¢(p)) and A*(¢(p)) of the matrices A and A* in the Maddox’s space
£(p), respectively.

9. Investigate the domains E" (£ (p)), E"(¢(p)) and E"(co(p)) of the Euler mean in the Maddox’s
spaces Lo (p), ¢(p) and co(p), respectively.
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