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ALGORITHM FOR SOLVING THE SYSTEMS OF THE GENERALIZED

SYLVESTER-TRANSPOSE MATRIX EQUATIONS USING LMI

FIKRET A. ALIEV1,2, VLADIMIR B. LARIN3, NAILA VELIEVA1, KAMILA GASIMOVA4

SHARGIYYA FARADJOVA1

Abstract. The solving for the systems of the generalized Sylvester-transpose matrix equations

is given using the techniques of linear matrix inequalities (LMI). An algorithm for its solving

is developed. The essence of the method is to minimize the linear functional, composed of the

residual Sylvester equations and some unknown parameter. Examples of the analysis of the

obtained results are provided.
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1. Introduction

The Sylvester equation

X −AXB = C,

the generalized Sylvester equation

EX −AXB = C,

and the linear matrix equations with more complex structure, for example, the system of the

linear matrix equations

AXB + CY D = M,

EXF +GYH = N

attracted and continue to attract the attention of researchers (see, for example [1-6, 9-13, 15]).

A biconjugate gradient algorithm (Bi-CG) for solving the systems of the generalized Sylvester-

transpose matrix equations is suggested in [14]. Below, using the techniques of linear matrix

inequalities (LMI) the solution of the systems of generalized Sylvester-transpose matrix equa-

tions is given.
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2. Problem statement

The system of generalized Sylvester-transpose matrix equations [14] have the form

A1PB1 + C1PD1 + E1P
′F1 = M1,

A2PB2 + C2PD2 + E2P
′F2 = M2.

(1)

It is assumed that in (1) the matrices

Ai, Ci ∈ Rpi×m , Bi, Di ∈ Rn×qi , Ei ∈ Rpi×n, Fi ∈ Rm×qi , Mi ∈ Rpi×qi , i = 1, 2,

are known and have corresponding dimensions, ′-means a transpose operation.

It is required to find the matrix P ∈ Rm×n , which satisfies both equations (1) with a suffi-

ciently high accuracy. Using the apparatus of linear matrix inequalities [7, 8] an algorithm was

constructed for solving equations (1). On examples the results are compared with [14], with the

accuracy of the solution of the equation differs by 10−4 and this shows the effectiveness of the

proposed algorithm.

3. General relations for LMI

As noted in [7] (the relation (2.3), (2.4)), the matrix inequality:[
Q(x) S(x)

S
′
(x) R(x)

]
> 0, (2)

where the matrices Q(x) = Q
′
(x), R(x) = R

′
(x), S(x) are linearly dependent on x, is equivalent

to the following matrix inequalities:

R(x) > 0, Q(x)− S(x)R−1(x)S
′
(x) > 0. (3)

Let us consider the following LMI [
Y T

T
′

I

]
> 0, Y = Y

′
, (4)

which according to (2), (3) can be written as

Y > TT
′
. (5)

Hereinafter, I is the identity matrix of the corresponding size, T, Y - matrices of the corresponding

dimensions to be determined.

Relations (4) can be generalized as the following system of LMI:[
Y Ti

T
′
i I

]
> 0, Y = Y

′
, i = 1, 2. (6)

which can be presented in a form similar to (5):

Y > T iT
′
i , i = 1, 2. (7)

With respect to (7), one can consider the standard LMI problem for eigenvalues, or the mini-

mization problem

cx = tr(Y )
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under the conditions (7), where tr(Y ) is the trace of the matrix Y . For solving this problem the

procedure mincx.m in MATLAB package [7] is used.

Consider the algorithms for solving the equations (1). To do this, at first we will provide an

explanation of the LMI for the relation (2) - (7).

4. The algorithm for solution of the equation (1)

Let us formulate solutions of the equation (1) in terms of LMI in the following form:

P ≥ 0, n > 0, Y > 0 to be determined from the following inequalities

[
Y (A1PB1 + C1PD1 + E1P

′F1,−M1)

(A1PB1 + C1PD1 + E1P
′F1,−M1)

′
I

]
> 0, (8)

[
Y (A2PB2 + C2PD2 + E2P

′F2,−M2)

(A2PB2 + C2PD2 + E2P
′F2,−M2)

′
I

]
> 0 (9)

[
n P

P ′ I

]
> 0. (10)

Thus, we can propose the following

Algorithm

(1) Based on the given matrices, the LMI is formed according to (8) - (10)

(2) Using the standard procedure mincx.m of the MATLAB package with condition (8) -

(10), the n and Y are minimized (with the corresponding weight coefficients) and further,

the required solution P is found.

According to the algorithm described above, the software was created in the MATLAB environ-

ment. Description of LMI operators in the MATLAB environment (with reference to Example

2, see the appendix).

Using computational procedure package MATLAB [7], the efficiency of the given algorithm is

illustrated by the following examples.

5. Examples

Example 1. As a first example, consider the generalized Sylvester-transpose matrix equation

APB + CPD + EP ′F = M. (11)

Initial data taken from [14]

A =



4 40 4 7 9 1 0 10

4 400 −99 −2 −2 2 3 4

−2 −2 100 5 600 −1 −5 5

100 2 −2 −2 5 1 200 2

−90 −9 10 5 200 3 1 3

10 −20 −1 50 4 5 3 10

20 3 900 6 3 5 9 4

20 3 233 6 3 5 9 4


,
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B =



10 −22 3 7 110 −1 6 10

40 −5 1 −12 5 5 6 4

−2 5 1 10 6 −2 12 2

10 5 −5 −2 5 −3 25 12

1 −800 2 2 3 5 7 44

20 −10 −100 5 3 2 11 77

30 6 200 4 2 200 8 77

300 6 2 4 2 200 8 7700


,

C =



−32 168 −4 −14 −422 6 −24 −20

−152 820 −202 44 −24 −16 −18 −8

4 −24 196 −30 1176 6 −58 2

160 −16 16 4 −10 14 300 −44

−184 3182 12 2 388 −14 −26 −170

−60 0 398 80 −4 2 −38 −288

−80 −18 1000 −4 −2 −790 −14 −300

−1160 −18 458 −4 −2 −790 −14 −3092


,

D =



−40 −156 −26 −49 −265 −3 −12 −70

−100 −1990 493 34 0 −20 −27 −28

14 0 −502 −45 −3012 9 1 −29

−520 −20 20 14 −35 1 −1050 −34

448 1645 −54 −29 −1006 −25 −19 −103

−90 120 205 −260 −26 −29 −37 −204

−160 −27 −4900 −38 −19 −425 −61 −174

−700 −27 −1169 −38 −19 −425 −61 −15420


,

F =



−30 −178 −23 −42 −155 −155 −6 −60

−60 −1995 494 22 5 −15 −21 −24

12 5 −501 −35 −3006 7 13 −27

−510 −15 15 12 −30 −2 −1025 −22

449 845 −52 −27 −1003 −20 −12 −59

−70 110 105 −225 −23 −27 −26 −127

−130 −21 −4700 −34 −17 −225 −53 −97

−400 −21 −1167 −34 −17 −225 −53 −7720


,

E =



−28 208 0 −7 −413 7 −24 −10

−148 1220 −301 42 −26 −14 −15 −4

2 −26 296 −25 1776 5 −63 7

260 −14 14 2 −5 15 500 −42

−274 3173 22 7 588 −11 −25 −167

−50 −20 397 130 0 7 −35 −278

−60 −15 1900 2 1 −785 −5 −296

−1140 −15 691 2 1 −785 −5 −3078


.

M=rand(8) –elements random matrix.

Solving the equation (1) with these initial data is obtained



FIKRET A. ALIEV et al: ALGORITHM FOR SOLVING THE SYSTEMS OF THE ... 243

P =



0.0050 −0.0002 −0.0007 0.0001 0.0002 −0.0014 0.0001 −0.0000

−0.0003 0.0000 0.0000 0.0000 −0.0000 0.0001 −0.0000 0.0000

−0.0002 −0.0000 0.0000 −0.0001 −0.0000 −0.0000 0.0000 −0.0000

0.0007 0.0001 −0.0000 0.0002 0.0000 0.0003 −0.0003 −0.0001

0.0001 −0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000

−0.0006 −0.0000 0.0002 −0.0005 −0.0000 0.0002 0.0000 0.0000

−0.0012 −0.0001 0.0001 −0.0003 −0.0000 0.0003 0.0004 0.0000

−0.0001 −0.0000 0.0000 0.0000 −0.0000 0.0000 0.0000 0.0000


.

(12)

The solution (12) satisfies equation (11) with an accuracy of 10−12, which in [14] is 10−8 (see

Figure 2 [14]).

The obtained result demonstrates the efficiency of the given algorithm.

Example 2. Let the coefficients of equation (1) be given in the following form

A1 = [3 4 5] , B1 =

 1 0 0

0 1 0

0 0 1

 ;C1 =
[
7 9 8

]
, D1 = 3×B1, E1 = A1/3, F1 = D1/5,

A2 = [5 3 7] , B2 =

 1 5 4

2 3 1

6 7 8

 ;C2 =
[
1 2 3

]
, D2 = 2×B2, E2 = A2/5, F2 = D2/3,

X =

 1 2 3

4 5 6

7 8 9

 .

This value X is then used for calculating the right sides of equations (1) (matrix M1,M2).

Solving these equations using the above algorithm, we obtain the solution (1) the norm is less

than the norm X.

The calculated residuals of the systems are in the form:

nev1 = 1.7053e-014; nevf1=1.7053e-014; nev2=5.0842e-013; nevf2=5.0842e-013

where nev1 and nev2 are the residuals of the first and second equations (1), nevf1 and nevf2 are

the Frobenius norms for the first and second equations (1), respectively.

6. Appendix

The description of the operators in the mincx procedure in the MATLAB environment is:

[mb1,mb2]=size(B1);

setlmis([]);

p=lmivar(2,[3 3]);

y=lmivar(1,[1 1]);

n=lmivar(1,[mb1 1]);

lmiterm([-1 1 1 y],1,1);

lmiterm([1 1 2 0],-M1);

lmiterm([1 1 2 p],A1,B1);

lmiterm([1 1 2 p],C1,D1);

lmiterm([1 1 2 -p],E1,F1);
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lmiterm([-1 2 2 0],1);

lmiterm([-2 1 1 y],1,1);

lmiterm([2 1 2 0],-M2);

lmiterm([2 1 2 p],A2,B2);

lmiterm([2 1 2 p],C2,D2);

lmiterm([2 1 2 -p],E2,F2);

lmiterm([-2 2 2 0],1);

lmiterm([-3 1 1 n],1,1);

lmiterm([3 1 2 p],1,1);

%lmiterm([-3 1 2 0],Xf);

lmiterm([-3 2 2 0],1);

lmiterm([-3 1 1 y],1,1);

%lmiterm([-4 1 1 n],1,1);

lmis=getlmis;

%[alpha,popt]=gevp(lmis,1);

nn=decnbr(lmis);

c=zeros(nn,1);

for j=1:nn,

[yj]=defcx(lmis,j,y);

c(j)=trace(yj);end;

c1=zeros(nn,1);

for j=1:nn,

[xj]=defcx(lmis,j,n);

c1(j)=trace(xj);end;

%c,c1,pause;

c=c+1e-16*c1;

options=[1e-10,0,0,0,0];

[copt,popt]=mincx(lmis,c,options);

P=dec2mat(lmis,popt,p),

nev1=norm(M1-(A1*P*B1+C1*P*D1+E1*P’*F1)),

nevf1=norm(M1-(A1*P*B1+C1*P*D1+E1*P’*F1),’fro’),

nev2=norm(M2-(A2*P*B2+C2*P*D2+E2*P’*F2)),

nevf2=norm(M2-(A2*P*B2+C2*P*D2+E2*P’*F2),’fro’),

np=norm(P),nx=norm(X),

7. Conclusion

For solving the generalized Sylvester-transpose matrix equations the algorithms are proposed

based on computational procedures for linear matrix inequalities in MATLAB environment. The

effectiveness of results is shown with several examples.
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