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HILFER FRACTIONAL SPECTRAL PROBLEM VIA BESSEL OPERATOR

ETIBAR PANAKHOV1,2, AHU ERCAN1, ERDAL BAS1, RAMAZAN OZARSLAN1

Abstract. In this paper, we deal with a modified fractional Hilfer Sturm–Liouville operator

for Bessel potential and we show the self-adjointness of the operator, orthogonality of distinct

eigenfunctions and reality of eigenvalues. Also, we obtain an integral representation of solu-

tion and we give a numerical method for obtaining numerical results by changing α, β values

illustrated by graphics.
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1. Introduction

Fractional differential equations involve fractional order derivatives of the dependent variables,

like dαy(x)
dxα , which are defined for α > 0. Here α is not necessarily an integer, and can be

rational, and complex-valued. Since fractional calculations have been applied to many areas

of science, the importance of fractional differential equations has increased for the last years.

Nowadays, the applications of fractional differential equation models are available in many areas

such as physics, mathematics, engineering, biology, and earth sciences [12, 13, 14, 15]. Fractional

differential equations continue to develop its new and updated definitions [1, 4, 9, 10, 13, 14, 17,

22, 21, 23, 25]. One of those is the generalized Riemann–Liouville fractional derivative operator

in [12], it is also called fractional Hilfer derivative, and defined as follows(
Dα,β

a± y
)
(x) =

(
±I

β(1−α)
a±

d

dx

(
I
(1−β)(1−α)
a± y

))
(x) , x > 0,

where α ∈ R, α ∈ (0, 1], β ∈ R and β ∈ [0, 1], I is the classical fractional Riemann-Liouville

derivative. According to this definition, the derivative is defined by two parameters α, β, where

α is the order and β is the type of the derivative. β plays an important role by changing

the type of the derivative, namely fractional Hilfer derivative is Riemann-Liouville fractional

derivative when β = 0, and Caputo fractional derivative when β = 1. The studies on fractional

Hilfer derivative have been done by [9, 10, 12, 26]. A modified fractional Hilfer derivative [24] is

defined as follows differently from the above definition(
Dα,β

a+ f
)
(x) =

(
I
β(1−α)
a+

d

dx

(
I
(1−β)(1−α)
a+ f

))
(x) ,(

Dα,β
b− f

)
(x) =

(
I
(1−β)(1−α)
b−

d

dx

(
I
β(1−α)
b− f

))
(x) .
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A new fractional operator called Ψ fractional integral defined in [24] and this new definition is

a generalization of the modified fractional Hilfer derivative.

Sturm-Liouville (S–L) problems become even more important in a lot of areas of science, and

engineering. S–L problems are divided into regular and singular types. Differential equations

such as Bessel, hydrogen atom, Hermitte, Jakobi, Legendre, and Chebyshev equations can be

obtained from Sturm-Liouville equations. There are many studies on these issues [2, 3, 5, 6, 7,

8, 11, 16, 18, 19, 20, 27, 28, 29]. Regular fractional S–L problem is studied in [15]. [5, 6] consider

the spectral theory of singular fractional S–L problems.

Let ν ∈ C. The following differential equation

z2
d2w

dz2
+ z

dw

dz
+
(
z2 − ν2

)
w = 0

is known as Bessel’s equation of order ν. The solutions of the Bessel equation can be found with

the Frobenius method. The general solution of the Bessel equation of order ν is

w (z) = AJν (z) +BYν (z) , A,B ∈ C

where Jν (z) and Yν (z) are called the Bessel functions of the first and second kind of order ν

and argument z, respectively.

In this paper, our aim is to consider modified Hilfer fractional singular Sturm-Liouville equa-

tion with Bessel potential, show the spectral properties of this problem and find the repre-

sentation of the solution of this equation via Laplace transforms. Furthermore, we give some

applications and their graphs of solutions of the equation.

2. Preliminaries

Definition 2.1. [21] Let 0 < α ≤ 1. The left and right fractional integrals in the Riemann-

Liouville sense of order α are given as follows:

(
Iαa,+f

)
(x) =

1

Γ (α)

x∫
a

(x− s)α−1 f (s) ds, x > a,

(
Iαb,−f

)
(x) =

1

Γ (α)

b∫
x

(s− x)α−1 f (s) ds, x < b,

respectively, where Γ denotes the gamma function.

Definition 2.2. [21] Let 0 < α ≤ 1. The left and right fractional derivatives in the Riemann-

Liouville sense of order α are defined as(
Dα

a,+f
)
(x) = D

(
I1−α
a,+ f

)
(x) x > a,(

Dα
b,−f

)
(x) = −D

(
I1−α
b,− f

)
(x) x < b,

similar formulas for left- and right-sided Caputo derivatives of order α:(
CDα

a,+f
)
(x) =

(
I1−α
a,+ Df

)
(x) x > a, 0 < α ≤ 1,

(
CDα

b,−f
)
(x) =

(
I1−α
b,− (−D) f

)
(x) x < b, . 0 < α ≤ 1.
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Definition 2.3. [10] The right and left sided fractional derivatives Dα,β
a± of order α (0 < α < 1)

and type β (0 ≤ β ≤ 1) with respect to x are defined by(
Dα,β

a± f
)
(x) =

(
±I

β(1−α)
a±

d

dx

(
I
(1−β)(1−α)
a± f

))
(x) (1)

whenever the second member of (1) exists.

Theorem 2.1. [24] For sufficiently good functions f (x) and g (x) , the new operator defined

above satisfy the following properties

b∫
a

g (x)
(
Dα,β

a+ f
)
(x) dx = −

b∫
a

f (x)
(
Dα,β

b− g
)
(x) dx+ I

(1−α)(1−β)
a+ f (x) I

β(1−α)
b− g (x)

∣∣∣b
a
. (2)

Definition 2.4. [24] The right-sided modified fractional Hilfer derivative Dα,β
a+ and left-sided

modified fractional Hilfer derivative Dα,β
b− are defined by(

Dα,β
a+ f

)
(x) =

(
I
β(1−α)
a+

d

dx

(
I
(1−β)(1−α)
a+ f

))
(x) , (3)

(
Dα,β

b− f
)
(x) =

(
I
(1−β)(1−α)
b−

d

dx

(
I
β(1−α)
b− f

))
(x) (4)

where α ∈ (0, 1) and β ∈ [0, 1] .

Definition 2.5. [21] The Laplace transform of a function f (t) is defined by

F (s) = L {f (t)} =

∞∫
0

e−stf (t) dt,

where s ∈ R+ .

Property 1. [10] According to the definition of the left Hilfer derivative we can write the

Laplace transform of Hilfer derivative as follow

L
{
Dα,β

0+ f (x)
}
(s) = sαL {f (x)} (s)− sβ(α−1)

(
I
(1−α)(1−β)
a+

d

dx
f (0+)

)
. (5)

Property 2. The convolution of a function f (t) and g (t) supported on only [0,∞) is defined

by

(f ∗ g) (t) =
t∫

0

f (s) g (t− s) ds,

where f, g : [0,∞) → R.

3. Main results

3.1. Spectral Properties Hilfer Fractional Bessel Operator.

In this section, firstly we shall present the modified Hilfer fractional derivative. We show

spectral properties of modified Hilfer fractional derivative and give the representation of the

solution via Laplace transforms.

Let α ∈ (0, 1) and β ∈ [0, 1]. Modified fractional Hilfer S–L operator for Bessel potential is

given as

Lα = Dα,β
0+ p (x)Dα,β

1− +

(
q (x)− v2 − 1/4

x2

)
,
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where Dα,β is given by equations (3− 4).

Consider fractional S–L equation

Lαyλ (x) = λyλ (x) (6)

where p (x) ̸= 0, p is a real valued continuous function in interval (0, 1], v is a nonnegative

integer and q ∈ L2 (0, 1).

The boundary conditions for the equation (6) is as follows:

y (0) = 0, (7)

c1I
(1−α)(1−β)
0+ p (1)Dα,β

1− y (1) + c2I
β(1−α)
1− y (1) = 0, (8)

where c21 + c22 ̸= 0.

Now, we consider the properties of the operator Lα by means of the following theorems.

Theorem 3.1. Modified fractional Hilfer Sturm-Liouville operator Lα for Bessel potential is

self-adjoint on (0, 1] .

Proof. Considering the following equation, and also Lα ∈ L2 [0, 1], we have

⟨Lαφ, ϕ⟩ =
1∫

0

Lαφ (x)ϕ (x) dx

=

1∫
0

ϕ (x)

[
Dα,β

0+ p (x) Dα,β
1− φ (x) +

(
q (x)− v2 − 1/4

x2

)
φ (x)

]
dx

=

1∫
0

ϕ (x)Dα,β
0+ p (x) Dα,β

1− φ (x) dx+

π∫
0

(
q (x)− v2 − 1/4

x2

)
φ (x)ϕ (x) dx.

From the equation (2) , boundary conditions (7),(8) and we get

⟨Lαφ, ϕ⟩ = −
1∫

0

p (x)Dα,β
1− φ (x)Dα,β

1− ϕ (x) dx

+ I
(1−α)(1−β)
0+ p (x)Dα,β

1− φ (x) I
β(1−α)
1− ϕ (x)

∣∣∣1
0
+

1∫
0

(
q (x)− v2 − 1/4

x2

)
φ (x)ϕ (x) dx. (9)

Similarly, we have

⟨φ,Lαϕ⟩ = −
1∫

0

p (x) Dα,β
1− ϕ (x)Dα,β

1− φ (x) dx

+ I
(1−α)(1−β)
0+ p (x)Dα,β

1− ϕ (x) I
β(1−α)
1− φ (x)

∣∣∣1
0
+

1∫
0

(
q (x)− v2 − 1/4

x2

)
ϕ (x)φ (x) dx. (10)

It can be easily seen that the right hand sides of the equations (9) and (10) are equal, therefore

⟨Lαφ, ϕ⟩ = ⟨φ,Lαϕ⟩ .

The proof is completed.

�
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Theorem 3.2. The eigenvalues of modified fractional Hilfer Sturm-Liouville problem with Bessel

potential (6)-(8) are real.

Proof. Firstly, assuming that λ eigenvalues are complex. If we use the self-adjointness of the

operator Lα, then we have

⟨Lαu, u⟩ = ⟨u, Lαu⟩
⟨λu, u⟩ = ⟨u, λu⟩(

λ− λ
)
⟨u, u⟩ = 0.

Since ⟨u, u⟩ ̸= 0,

λ = λ

and hence λ eigenvalues are real.

�

Theorem 3.3. The eigenfunctions corresponding to distinct eigenvalues of modified fractional

Hilfer Sturm-Liouville problem with Bessel potential (6)-(8) are orthogonal with the weight func-

tion wα on (0, 1],

1∫
0

wα (x) yλ1 (x) yλ2 (x) dx = 0, λ1 ̸= λ2.

Proof. By assumptions modified fractional Hilfer Sturm-Liouville problem with Bessel potential

having two different eigenvalues (λ1, λ2), we have

Lαyλ1 (x) = λ1wα (x) yλ1 (x) , (11)

yλ1 (0) = 0,

c1I
(1−α)(1−β)
0+ p (1)Dα,β

1− yλ1 (1) + c2I
β(1−α)
1− yλ1 (1) = 0,

Lαyλ2 (x) = λ2wα (x) yλ2 (x) , (12)

yλ2 (0) = 0,

c1I
(1−α)(1−β)
0+ p (1)Dα,β

1− yλ2 (1) + c2I
β(1−α)
1− yλ2 (1) = 0,

multiplying equation (11) and (12) by yλ1 , yλ2 respectively and subtracting from each other, we

have

(λ1 − λ2)wα (x) yλ1yλ2 = yλ1Lαyλ2 − yλ2Lαyλ1 .

Integrating from 0 to 1, and applying relation (2), we find that

(λ1 − λ2)

1∫
0

wα (x) yλ1 (x) yλ2 (x) dx = 0,

where λ1 ̸= λ2.

�
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Lemma 3.1. Consider the singular fractional Hilfer Sturm-Liouville equation

Dα,β
0+

(
Dα,β

0+ y (x)
)
+

(
q (x)− v2 − 1/4

x2

)
y (x) = λy. (13)

where q (x) ∈ L2 (0, 1). Then the representation of solution for (13) can be written in the form

y (x) = a1t
(α−1)(1−β)E2α,α−β(α−1)

(
λt2α

)
+

+a2t
2α−1−β(α−1)E2α,2α−β(α−1)

(
λt2α

)
−

t∫
0

(t− s)2α−1E2α,2α

(
λ (t− s)2α

)(
q (s)− v2 − 1/4

s2

)
y (s) ds. (14)

Proof. By taking Laplace transform on both sides of equation (13) and using equation (5) , we

have

L
{
Dα,β

0+

(
Dα,β

0+ y (x)
)}

=

= L

{(
λ− q (x) +

v2 − 1/4

x2

)
y (x)

}
⇒

sαL
{
Dα,β

0+ y (x)
}
− sβ(α−1)

[
I
(1−α)(1−β)
0+

d

dx
Dα,β

0+ y (0+)

]
= λL {y (x)} − L

{(
q (x)− v2 − 1/4

x2

)
y (x)

}

sα
[
sαL {f (x)} (s)− sβ(α−1)

(
I
(1−α)(1−β)
0+

d

dx
y (0+)

)]
+sβ(α−1)

[
I
(1−α)(1−β)
0+

d

dx
Dα,β

0+ y (0+)

]
= λL {y (x)} − L

{(
q (x)− v2 − 1/4

x2

)
y (x)

}
.

It can be readily obtained

L {y (x)} =
sα+β(α−1)a1
s2α − λ

+
sβ(α−1)a2
s2α − λ

− 1

s2α − λ
∗
(
q (x)− v2 − 1/4

x2

)
y (x) . (15)

In here by taking inverse Laplace transform for the fractional equation on both sides of (15) ,

we can obtain (14) , where

a1 = I
(1−α)(1−β)
0+

d

dx
y (0+) and a2 = I

(1−α)(1−β)
0+

d

dx
Dα,β

0+ y (0+) ,

where ∗ denotes the convolution symbol. �

4. Applications

4.1. Analysis of the Adomian Decomposition Method.

Let’s consider the equation (6) for the applicability of the method

Dα,β
0+

(
p (x)

d

dx
y (x)

)
+

(
q (x)− v2 − 1/4

x2
− λ

)
y (x) = 0, x ∈ [0, π] . (16)

We may rewrite equation (16) for convenience in the form

Ty (x) = N
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where T = Dα,β
0+ p (x)D1 is specified as an inverse operator and N = N (λ, x, y, y′) is a linear

operator involves all other terms. Here D1 = d
dx . The inverse of the operator T has the following

form

T−1 =

x∫
0

1

p (t)
Iα0+ (.) dt.

Applying T−1 on the left side of equation (16), then we get

(
T−1T

)
(y (x)) =

x∫
0

1

p (t)
Iα0+

(
Dα,β

0+

(
p (t)

d

dt
y (t)

))
dt,

=

x∫
0

1

p (t)

(
p (t)

d

dt
y (t)− yα,β (t)

)
dt,

= y (x)− y (0)−
x∫

0

yα,β (t)

p (t)
dt,

where the initial conditions y (0) and yα,β (x) = x−(1−α)(1−β)

Γ(α+β−αβ) I
(1−α)(1−β)
0+ p (0) d

dxy (0) should be

known.

Hence, applying T−1 to both side of the equation (16), then we get

y (x) = y (0) +

x∫
0

yα,β (t)

p (t)
dt+ T−1N

(
λ, x, y, y′

)

= y (0) +

x∫
0

yα,β (t)

p (t)
dt+

x∫
0

1

p (t)
Iα0+

[
N
(
λ, t, y, y′

)]
dt. (17)

The Adomian’s decomposition method presumes the solution function y (x) can be represented

by the following series,

y (x) =
∞∑
n=0

yn (x) , (18)

and the term N is defined by an infinite series of Adomian polynomials

N =

∞∑
n=0

An, (19)

where An are the Adomian polynomials as following

An =
1

n!

dn

dµn

[
N

( ∞∑
i=0

µiyi (x)

)]
µ=0

.

Considering (17) , (18) and (19), we have

∞∑
n=0

yn (x) = y (0) +

x∫
0

yα,β (t)

p (t)
dt+

∞∑
n=0

T−1 (An (x)) .
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Consequently, we may give the recursive relation as following

y0 (x) = y (0) +

x∫
0

yα,β (t)

p (t)
dt,

yn+1 (x) = T−1 (An (x)) , n ≥ 0,

where

An (x) =

(
−q (x) +

v2 − 1/4

x2
+ λ

)
yn (x) .

Now, we give some numerical assessments by means of this method.

4.2. Numerical Results.

Let’s consider the fractional eigenvalue problem

Dα,β
0+

(
y′ (x)

)
+

(
q (x)− v2 − 1/4

x2
− λ

)
y (x) = 0, (20)

subject to

y (0) = 0, Iβ0+y
′ (0) = 0. (21)

Equation (20) can be written as the following closed form,

Ty (x) +

(
q (x)− v2 − 1/4

x2
− λ

)
y (x) = 0.

The inverse operator of T has the form

T−1 =

x∫
0

1

p (t)
Iα0+ (.) dt.

Applying T−1 to equation (20) and using initial condition at x = 0, we have

Iα0+D
α,β
0+ y′ (x) = Iα0+

[(
−q (x) +

v2 − 1/4

x2
+ λ

)
y (x)

]
y′ (x)− yα,β = −Iα0+

[(
−q (x) +

v2 − 1/4

x2
+ λ

)
y (x)

]

y (x)− y (0) =

x∫
0

yα,β (t) dt+

x∫
0

Iα0+

[(
−q (t) +

v2 − 1/4

t2
+ λ

)
y (t)

]
dt

y (x) = y (0) +

x∫
0

yα,β (t) dt+

x∫
0

Iα0+

[(
−q (t) +

v2 − 1/4

t2
+ λ

)
y (t)

]
dt

where

yα,β (t) =
t−(1−β)(1−α)

Γ (α+ β − αβ)
I
(1−β)(1−α)
0+ y′ (0) .
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Applying decomposition series and performing necessary operations, we have,

y0 (x) = y (0) +
1

Γ (α+ β − αβ)

x∫
0

t−(1−β)(1−α)I
(1−β)(1−α)
0+ y′ (0) dt

yn+1 (x) =

x∫
0

Iα0+

[(
−q (t) +

v2 − 1/4

t2
+ λ

)
yn (t)

]
dt, n ≥ 0.

Let’s give the numerical results for the eigenfunctions of the problem (20)−(21) with graphics

under different orders, different types and different potentials by using the ADM method for

n = 15 iterations.

Figure 1. α = 0.4, β = 0.6, v = 0, q = 0, x = π
2
.

Figure 2. α = 0.3, β = 0.6, v = 0, q = 0, x = π
2
.
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Figure 3. α = 0.4, β = 0.6, v = 0, q = 0, x = π
2
.

Figure 4. α = 0.4, β = 0.6, v = 0, x = π
2
.

5. Conclusion

Consequently, we define modified fractional Hilfer Sturm-Liouville problem with Bessel poten-

tial, and then we show the self-adjointness of the operator, orthogonality of distinct eigenfunc-

tions and reality of eigenvalues. Also, we give the Adomian decomposition method for finding

approximations of eigenvalues and eigenfunctions. We compare these results under different

values.

We observe the approximations to the eigenvalues by changing values of α and β . Also, we

observe the behavior of eigenfunctions by changing the type of the derivative β in Fig.3, the

results are rather interesting and in accordance with the originality of the Hilfer fractional deriv-

ative for obtaining more accurate numerical results. We observe the behavior of eigenfunctions

under different orders of the derivative α in Fig.1, Fig.2 and Fig.4.
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