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ON STRONGLY (p, h)-CONVEX FUNCTIONS
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Abstract. In this paper, we introduce a new class of convex functions which is called strongly

(p, h)-convex functions. We show that this class includes several other new classes of convex

functions. We also establish some new results for Hermite-Hadamard type inequalities via

strongly (p, h)-convex functions. Some special cases which can be deduced from our main

results are also discussed.

Keywords: convex functions, p-convex functions, strongly (p, h)-convex functions, Hermite-

Hadamard inequalities.

AMS Subject Classification: 26D15, 26A51.

1. Introduction and preliminaries

In recent years many researchers have generalized the classical concepts of convex sets and

convex functions in different directions using novel approaches, see [1, 2, 3, 4, 6, 7, 8, 21].

Theory of convexity has many applications in different fields of pure and applied sciences. It

has a strong relationship with theory of inequalities. Consequently many inequalities have been

obtained via convex functions, see [4, 5, 6, 7, 8, 9, 11, 12, 10, 13, 14, 15, 16, 17, 18, 19, 20]. A

significant class of convex functions is that of strongly convex functions which was introduced in

[22]. Strongly convex functions are being used to construct some iterative methods for solving

variational inequalities and related optimization problems. The Hermite-Hadamard inequality

for strongly convex functions was obtained in [10]. For various applications of strongly convex

functions in variational inequalities and optimization, see [1, 2, 10, 14, 15, 17, 18, 19, 22] and the

references therein. The aim of this paper is to define a new class of convex functions, which is

called the strongly (p, h)-convex function. We show that this class unifies several other new and

known classes of convex functions. We derive some new estimates of Hermite-Hadamard type

inequalities via strongly (p, h)-convex functions. Several new and known special cases which

can be deduced from our main results are also discussed. First of all, we recall some previously

known concepts.

Definition 1.1 ([23]). An interval I is said to be a p-convex set if

Mp(x, y; t) = [txp + (1− t)yp]
1
p ∈ I

for all x, y ∈ I, t ∈ [0, 1], where p = 2k + 1 or p = n
m , n = 2r + 1,m = 2t+ 1 and k, r, t ∈ N.
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Definition 1.2 ([23]). Let I be a p-convex set. A function f : I → R is said to be p-convex

function or belongs to the class PC(I), if

f(Mp(x, y; t)) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ I, t ∈ [0, 1].

It is very much obvious that for p = 1 Definition 1.2 reduces to the definition for classical

convex functions.

Note that for p = −1, we have the definition of harmonically convex functions:

Definition 1.3 ([8]). A function f : H ⊂ R \ {0} → R is said to be harmonically convex

function, if

f

(
xy

(1− t)x+ ty

)
≤ tf(x) + (1− t)f(y), ∀x, y ∈ I, t ∈ [0, 1].

Also note that for t = 1
2 in Definition 1.2, we have Jensen p-convex functions or mid p-convex

functions:

f(Mp(x, y; 1/2)) ≤
f(x) + f(y)

2
, ∀x, y ∈ I, t ∈ [0, 1].

It have shown that a minimum of a differentiable harmonic convex functions can be characterized

by a class of variational inequalities, which is called harmonic variational inequalities, see [15].

Fang et al. [7] introduced a new class of convex functions, which is called as (p, h)-convex

functions.

Definition 1.4. Let h : J → R be a non-negative and h ̸= 0. A function f : I → R is said to

be (p, h)-convex function, if f is non-negative and

f(Mp(x, y; t)) ≤ h(t)f(x) + h(1− t)f(y), ∀x, y ∈ I, t ∈ (0, 1).

2. New notions

In this section, we introduce some new classes of convex functions. First of all, we introduce

the class of strongly (p, h)-convex functions.

Definition 2.1. Let h : J → R be a non-negative and h ̸= 0. A function f : I → R is said to

be strongly (p, h)-convex function with modulus µ > 0, if

f(Mp(x, y; t)) ≤ h(t)f(x) + h(1− t)f(y)− µt(1− t)(yp − xp)2, ∀x, y ∈ I, t ∈ (0, 1).

Note that if µ = 0 in Definition 2.1, then, we have Definition 1.4.

I. If h(t) = t in Definition 2.1, then, we have definition of strongly p-convex functions, which

appears to be new one.

Definition 2.2. A function f : I → R is said to be strongly p-convex function with modulus

µ > 0, if

f(Mp(x, y; t)) ≤ tf(x) + (1− t)f(y)− µt(1− t)(yp − xp)2, ∀x, y ∈ I, t ∈ (0, 1).

II. If h(t) = ts in Definition 2.1, then, we have definition of Breckner type of strongly (p, s)-

convex functions, which is a new one.

Definition 2.3. A function f : I → R is said to be Breckner type of strongly (p, s)-convex

function with modulus µ > 0, if

f(Mp(x, y; t)) ≤ tsf(x) + (1− t)sf(y)− µt(1− t)(yp − xp)2,

∀x, y ∈ I, t ∈ (0, 1), s ∈ [0, 1].
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III. If h(t) = t−s in Definition 2.1, then, we have definition of Godunova-Levin type of strongly

(p, s)-convex functions.

Definition 2.4. A function f : I → R is said to be Godunova-Levin type of strongly (p, s)-convex

function with modulus µ > 0, if

f(Mp(x, y; t)) ≤
1

ts
f(x) +

1

(1− t)s
f(y)− µt(1− t)(yp − xp)2,

∀x, y ∈ I, t ∈ (0, 1), s ∈ [0, 1].

IV. If h(t) = t−1 in Definition 2.1, then, we have definition of Godunova-Levin type of strongly

p-convex functions, which appears to be a new one.

Definition 2.5. A function f : I → R is said to be Godunova-Levin type of strongly p-convex

function with modulus µ > 0, if

f(Mp(x, y; t)) ≤
1

t
f(x) +

1

1− t
f(y)− µt(1− t)(yp − xp)2,

∀x, y ∈ I, t ∈ (0, 1).

V. If h(t) = 1 in Definition 2.1, then, we have definition of strongly (p, P )-convex functions.

Definition 2.6. A function f : I → R is said to be strongly (p, P )-convex function with modulus

µ > 0, if

f(Mp(x, y; t)) ≤ f(x) + f(y)− µt(1− t)(yp − xp)2, ∀x, y ∈ I, t ∈ (0, 1).

Remark 2.1. We would like to remark here that, for p = 1 in Definition 2.1, we have definition

for strongly h-convex functions, see [1]. And for p = −1 in Definition 2.1, we have definition

for strongly harmonic h-convex functions, which also appears to be new one.

Definition 2.7. A function f : H \ {0} → R is said to be strongly harmonic h-convex function

with modulus µ > 0, if

f

(
xy

(1− t)x+ ty

)
≤ h(t)f(x) + h(1− t)f(y)− µt(1− t)

(
1

y
− 1

x

)2

,

∀x, y ∈ I, t ∈ (0, 1).

Note that, if h(t) = t in Definition 2.7, we have definition for strongly harmonic convex

functions, see [19]. If h(t) = ts, then, we have definition for Breckner type of strongly harmonic

s-convex functions.

Definition 2.8. A function f : H \ {0} → R is said to be Breckner type of strongly harmonic

s-convex function, s ∈ [0, 1] with modulus µ > 0, if

f

(
xy

(1− t)x+ ty

)
≤ tsf(x) + (1− t)sf(y)− µt(1− t)

(1
y
− 1

x

)2
,

∀x, y ∈ I, t ∈ (0, 1).

If h(t) = t−s, then, we have definition for Godunova-Levin type of strongly harmonic s-convex

functions.

Definition 2.9. A function f : H \ {0} → R is said to be Godunova-Levin type of strongly

harmonic s-convex function, s ∈ [0, 1] with modulus µ > 0, if

f

(
xy

(1− t)x+ ty

)
≤ 1

ts
f(x) +

1

(1− t)s
f(y)− µt(1− t)

(1
y
− 1

x

)2
,

∀x, y ∈ I, t ∈ (0, 1).
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If h(t) = t−1, then, we have definition for Godunova-Levin type of strongly harmonic convex

functions.

Definition 2.10. A function f : H \ {0} → R is said to be Godunova-Levin type of strongly

harmonic convex function with modulus µ > 0, if

f

(
xy

(1− t)x+ ty

)
≤ 1

t
f(x) +

1

1− t
f(y)− µt(1− t)

(1
y
− 1

x

)2
,

∀x, y ∈ I, t ∈ (0, 1).

If h(t) = 1, then, we have definition for strongly harmonic P -convex functions.

Definition 2.11. A function f : H \{0} → R is said to be strongly harmonic P -convex function

with modulus µ > 0, if

f

(
xy

(1− t)x+ ty

)
≤ f(x) + f(y)− µt(1− t)

(1
y
− 1

x

)2
, ∀x, y ∈ I, t ∈ (0, 1).

We would like to emphasize that for appropriate and suitable choices of the arbitrary function

h(.) and the parameter p, one can obtain a wide class of strongly convex functions as special

cases from Definition 2.1. This shows that Definition 2.1 is a general unifying one.

3. Hermite-Hadamard type inequalities via strongly (p, h)-convex functions

In this section, we derive our main results and discuss some special cases.

Theorem 3.1. Let f : I → R be strongly (p, h)-convex function with modulus µ > 0. Then, for

h
(
1
2

)
̸= 0, we have

1

2h
(
1
2

) [f ([ap + bp

2

] 1
p

)
+

µ

12
(bp − ap)2

]

≤ p

bp − ap

b∫
a

xp−1f(x)dx ≤ (f(a) + f(b))

1∫
0

h(t)dt− µ

6
(bp − ap)2.

Proof. For t ∈ (0, 1), let x = [tap + (1 − t)bp]
1
p and y = [(1 − t)ap + tbp]

1
p . Using strongly

(p, h)-convexity of f , we get

f

([
ap + bp

2

] 1
p

)
= f

([
xp + yp

2

] 1
p

)

≤ h
(1
2

) [
f([tap + (1− t)bp]

1
p ) + f([(1− t)ap + tbp]

1
p )
]
− µ

4
(1− 2t)2(bp − ap)2.

Integrating above inequality with respect to t on [0, 1], we have

1

2h
(
1
2

) [f ([ap + bp

2

] 1
p

)
+

µ

12
(bp − ap)2

]
≤ p

bp − ap

b∫
a

xp−1f(x)dx. (1)

Also

f([tap + (1− t)bp]
1
p ) ≤ h(t)f(a) + h(1− t)f(b)− µt(1− t)(bp − ap)2.
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Integrating above inequality with respect to t on [0, 1], we have

p

bp − ap

b∫
a

xp−1f(x)dx ≤ (f(a) + f(b))

1∫
0

h(t)dt− µ

6
(bp − ap)2. (2)

Summation of (1) and (2) completes the proof. �

We now discuss some special cases of Theorem 3.1.

I. If p = 1, in Theorem 3.1, we have Theorem 4.1 [1]. If p = −1, in Theorem 3.1, we have:

Theorem 3.2. Let f : I → R be strongly harmonic h-convex function with modulus µ > 0.then,

for h
(
1
2

)
̸= 0, we have

1

2h
(
1
2

) [f ( 2ab

a+ b

)
+

µ(b− a)2

12a2b2

]
≤ ab

b− a

∫ b

a

f(x)

x2
dx ≤ (f(a) + f(b))

∫ 1

0
h(t)dt− µ(b− a)2

6a2b2
.

If h(t) = t and p = 1, in Theorem 3.1, we have:

Theorem 3.3. Let f : I → R be strongly convex function with modulus µ > 0 then, we have

f

(
a+ b

2

)
+

µ(b− a)2

12
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
− µ(b− a)2

6
.

When h(t) = t and p = −1, we have:

Theorem 3.4 ([19]). Let f : I → R be strongly harmonic convex function with modulus µ > 0

then, we have

f

(
2ab

a+ b

)
+

µ(b− a)2

12a2b2
≤ ab

b− a

∫ b

a

f(x)

x2
dx ≤ f(a) + f(b)

2
− µ(b− a)2

6a2b2
.

II. If h(t) = t, in Theorem 3.1, we have following new result for strongly p-convex functions.

Corollary 3.1. Let f : I → R be strongly p-convex function with modulus µ > 0, then, we have

f

([
ap + bp

2

] 1
p

)
+

µ

12
(bp − ap)2

≤ p

bp − ap

b∫
a

xp−1f(x)dx ≤ f(a) + f(b)

2
− µ

6
(bp − ap)2.

III. If h(t) = ts, in Theorem 3.1, we have following new result for Breckner type of strongly

(p, s)-convex functions.

Corollary 3.2. Let f : I → R be Breckner type of strongly (p, s)-convex function with modulus

µ > 0, then, we have

2s−1

[
f

([
ap + bp

2

] 1
p

)
+

µ

12
(bp − ap)2

]

≤ p

bp − ap

b∫
a

xp−1f(x)dx ≤ f(a) + f(b)

s+ 1
− µ

6
(bp − ap)2.
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IV. If h(t) = t−s, in Theorem 3.1, we have following new result for Godunova-Levin type of

strongly (p, s)-convex functions.

Corollary 3.3. Let f : I → R be Godunova-Levin type of strongly (p, s)-convex function with

modulus µ > 0, then, we have

1

21+s

[
f

([
ap + bp

2

] 1
p

)
+

µ

12
(bp − ap)2

]

≤ p

bp − ap

b∫
a

xp−1f(x)dx ≤ f(a) + f(b)

1− s
− µ

6
(bp − ap)2.

V. If h(t) = 1, in Theorem 3.1, we have following new result for strongly (p, P )-convex functions.

Corollary 3.4. Let f : I → R be strongly (p, P )-convex function with modulus µ > 0, then, we

have

1

2

[
f

([
ap + bp

2

] 1
p

)
+

µ

12
(bp − ap)2

]

≤ p

bp − ap

b∫
a

xp−1f(x)dx ≤ (f(a) + f(b))− µ

6
(bp − ap)2.

VI. If h(t) = ts and p = −1, in Theorem 3.1, we have following new result for Breckner type of

strongly harmonic s-convex functions.

Corollary 3.5. Let f : I → R be Breckner type of strongly harmonic s-convex function with

modulus µ > 0, then, we have

2s−1

[
f

(
2ab

a+ b

)
+

µ(b− a)2

12a2b2

]
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ f(a) + f(b)

s+ 1
− µ(b− a)2

6a2b2
.

VII. If h(t) = t−s and p = −1, in Theorem 3.1, we have following new result for Godunova-Levin

type of strongly harmonic s-convex functions.

Corollary 3.6. Let f : I → R be Godunova-Levin type of strongly harmonic s-convex function

with modulus µ > 0, then, we have

1

21+s

[
f

(
2ab

a+ b

)
+

µ(b− a)2

12a2b2

]
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ f(a) + f(b)

1− s
− µ(b− a)2

6a2b2
.

VIII. If h(t) = 1 and p = −1, in Theorem 3.1, we have following new result for strongly

harmonic P -convex functions.

Corollary 3.7. Let f : I → R be strongly harmonic P -convex function with modulus µ > 0,

then, we have

1

2

[
f

(
2ab

a+ b

)
+

µ(b− a)2

12a2b2

]
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ (f(a) + f(b))− µ(b− a)2

6a2b2
.
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Theorem 3.5. Let f, g : I → R be non-negative two strongly (p, h)-convex functions, then,

p

bp − ap

b∫
a

xp−1f(x)g(x)dx

≤ M(a, b)

1∫
0

h1(t)h2(t)dt+N(a, b)

1∫
0

h1(t)h2(1− t)dt

− µ

12
P (a, b)(bp − ap)2 +

µ2

30
(bp − ap)2.

where

M(a, b) = f(a)g(a) + f(b)g(b), (3)

N(a, b) = f(a)g(b) + f(b)g(a), (4)

and

P (a, b) = f(a) + g(a) + f(b) + g(b). (5)

Proof. Since f and g are strongly (p, h)-convex function, then

f
(
[tap + (1− t)bp]

1
p

)
g
(
[tap + (1− t)bp]

1
p

)
≤ [h1(t)f(a) + h1(1− t)f(b)− µt(1− t)(bp − ap)]

× [h2(t)g(a) + h2(1− t)g(b)− µt(1− t)(bp − ap)]

= h1(t)h2(t)f(a)g(a) + h1(t)h2(1− t)f(a)g(b)− µt2(1− t)f(a)(bp − ap)2

+ h1(t)h2(1− t)f(b)g(a)

+ h1(1− t)h2(1− t)f(b)g(b)− µt(1− t)2f(b)(bp − ap)2

− µt2(1− t)g(a)(bp − ap)2 − µt(1− t)2g(b)(bp − ap)2 + µ2t2(1− t)2(bp − ap)2.

Integrating above inequality with respect to t on the interval [0, 1], we have

p

bp − ap

b∫
a

xp−1f(x)g(x)dx

≤ M(a, b)

1∫
0

h1(t)h2(t)dt+N(a, b)

1∫
0

h1(t)h2(1− t)dt

− µ

12
{f(a) + g(a) + f(b) + g(b)}(bp − ap)2 +

µ2

30
(bp − ap)2.

This completes the proof. �

4. Conclusion

In this paper, we have introduced and studied a general and unified class of strongly convex

functions involving an arbitrary function h and a parameter p. It is shown that a wide class

of convex functions and their forms can be obtained as special cases. Several new Hermite-

Hadamard type inequalities are established as applications of our results, we have discussed

some special cases.
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