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Abstract. The steady two-dimensional boundary layer flow of nanofluid past a static wedge 
is numerically investigated. Two metamodels based on the evolved group method of data 
handling (GMDH) type neural networks are then obtained for modeling of both pressure 
drop parameter (PDP) and heat transfer parameter (HTP) with respect to design variables of 
volume fraction and Falkner-Skan power law parameter in considered problem. Resultant 
polynomial neural networks are deployed to find a set of optimal solutions, well known as 
Pareto optimal solutions, using multi-objective genetic algorithms (GAs) (non-dominated 
sorting genetic algorithm, NSGAII). It is shown that some useful and important information 
involved in the performance of Falkner-Skan wedge flow can be discovered by Pareto 
based multi-objective optimization. 
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1. Introduction 

 
Increasing demand of cooling rate enhancement in high performance 

integrated electronic systems with exceedingly small dimensions was brought into 
happen using new class of fluids termed as the nanofluids. Dispersing nanoparticles 
with higher magnitude of thermal conductivity than the base fluid in liquids like 
water, ethylene glycol (EG), oils, etc. result in significantly increased cooling 
performance [1]. Due to enormous amount of heat generated by recent electronics, 
finding an efficient cooling system is one of the most important problems in 
designing electronic components. There are several studies for convective heat 
transfer in the literature. Effect of different particle volume percentages and 
different Reynolds number on the heat transfer coefficient of deionized water with 
a dispersion of Cu particles with below 100nm diameter as sample nanofluid were 
considered in some studies [2-4]. They showed an increasing Nusselt number with 
increasing volume loading of Cu-water nanofluids and Reynolds number. 
According to Lai et al. [5], the heat transfer coefficient depends on the nanofluid 
volume fraction, Reynolds number, the base fluid thermal properties, temperature 
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and the nanoparticle purity. Considerable amount of studies were carried out 
regarding thermal conductivity of nanofluids [6-8]. Wang et al. [9] considered 
alumina and cupric oxide with a variety of base-fluid and showed enhanced 
thermal conductivity. A maximum of 12% increase in the thermal conductivity is 
noted with alumina particles of a volume fraction of 3%. However, the viscosity on 
the other hand showed an increase of 20–30% for the same volume fraction. 
Eastman et al. [10], reported 40% enhancement in thermal conductivity of 0.3% 
copper nanoparticles of ethylene glycol nanofluids compared to base fluid. 

Finding optimal values of volume fraction and Falkner-Skan power law 
parameter is, indeed, a multi-objective optimization problem. Both the skin friction 
coefficient and the local Nusselt number of the flow and heat transfer are important 
objective functions to be optimized simultaneously in such a real world complex 
multi-objective optimization problem. These objective functions are figured out 
from experiment or using time consuming process of computer fluid dynamic 
(CFD) approaches, which cannot be used in an iterative optimization task unless a 
simple but effective metamodel is constructed over the numerical or experimental 
data.  

System identification techniques are applied in many fields to model and 
predict the behaviors of unknown and/or very complex systems based on given 
input–output data [11]. Soft computing methods [12] are considered strictly in 
solving complex non-linear system identification and control problems. Many 
studies have been carried out to use evolutionary methods as effective tools for 
system identification [13-15]. Among these methodologies, the group method of 
data handling (GMDH) algorithm is a self-organizing approach by which gradually 
more complicated models are generated based on the evaluation of their 
performances on a set of multi-input, single output data pairs ),...,2,1( ),( Miyx ii = . 
The GMDH was first developed by Ivakhnenko [16] as a multivariate analysis 
method for complex systems modeling and identification. In this way, the GMDH 
was used to circumvent the difficulty of having a priori knowledge of mathematical 
model of the process being considered. 

Genetic algorithms have been used in a feed forward GMDH type neural 
network for each neuron searching its optimal set of connection with the preceding 
layer [17,18]. In the former reference, the authors have proposed a hybrid genetic 
algorithm for a simplified GMDH type neural network in which the connection of 
neurons are restricted to adjacent layers. Such shortcoming has been recently 
removed by the work of some authors [19,20]. 

Optimization in engineering design has always been of great importance 
and interest particularly in solving complex real-world design problems. Basically, 
the optimization process is defined as finding a set of values for a vector of design 
variables so that it leads to an optimum value of an objective or cost function. 
There are many calculus-based methods including gradient approaches to find 
mostly local optimum solutions and these are comprehensively explored in [21]. 
Strong dependence of gradient methods on the initial guess can cause gradient 
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based methods to find a local optimum rather than a global one. This difficulty has 
led to extensive use of heuristic optimization methods, particularly genetic 
algorithms (GAs). When there are several objectives of cost functions that should 
be optimized simultaneously, the problem is considered as multi-objective 
optimization problem. Therefore, there is no single optimal solution that is best 
with respect to all the objective functions. Instead, there is a set of optimal 
solutions, well known as Pareto optimal solutions [22], which distinguish 
significantly the inherent natures between single-objective and multi-objective 
optimization problems. The concept of a Pareto front in the space of objective 
functions in multi-objective optimization problems stand for a set of solutions that 
are non-dominated to each other but are superior to the rest of solutions in the 
search space. Both the NSGA and MOGA are Pareto based approaches which use 
the non-dominated sorting procedure originally proposed by Goldberg [23]. The 
lack of elitism in these algorithms was a motivation for modification of that 
algorithm to NSGA-II [24] in which a direct elitist mechanism has been introduced 
to enhance the population diversity. 

In the present paper, effect of volume fraction and Falkner-Skan power law 
parameter are considered on skin friction coefficient and the local Nusselt number. 
An optimized GMDH type neural network are trained to best prediction of 
objectives for different designing parameters values. Obtained polynomial models 
are used to find pareto front of the best possible combinations of maximum Nusselt 
number and minimum skin friction coefficient. The corresponding variations of 
design variables, Nusselt number and skin friction coefficient, known as the Pareto 
set, constitute some important design choices that can be effectively used for 
optimal heat transfer with lower pressure drop in electronic device cooling systems 
using nanofluids. 

In this study, numerical solution of Navier-Stokes and energy equations 
were obtained using MATLAB bvp4c and RK4 and validated using data reported 
by Yacob et al. [25]. Then, GS-GMDH type neural network are used to obtain 
polynomial models for simulating of HTP and PDP with values of m and φ . The 
obtained simple polynomial models are then used in a Pareto based multi-objective 
optimization approach to find the best possible combinations of HTP and PDP, 
known as the Pareto front.  
 
2. Problem formulation 
 

Consider the problem of steady two-dimensional boundary layer flow with 
water-based nanofluids containing Cu as nanoparticles past a wedge as depicted in 
Figure 1. No slip condition is taken into account and nanofluid is assumed to be 
incompressible along with laminar flow. Applying the boundary layer 
approximations and using the nanofluid model proposed by Tiwari and Das [26], 
the conservation of mass, momentum, and energy equations for a nanofluid are 
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Here u and v are the velocity components along the x and y direction, respectively, 
μnf and ρnf are the viscosity of the nanofluid and the density of the nanofluid 
respectively, and αnf is the thermal diffusivity of the nanofluid which are given by  
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where ρf is the density of the base fluid, ρs is the density of the solid particle, μf is 
the viscosity of the base fluid and φ is the solid volume fraction of the nanofluid. knf 
is the effective thermal conductivity of the nanofluid, which are approximated by 
the Maxwelle-Garnetts model (Oztop and Abu-Nada [27]). 

For a main stream with velocity ue varying as xm, ue(x)=U∞xm  where U∞ 
and m are constants with 0<m<1, the transformations 
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reduce the governing equations to [25] 
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subject to the boundary conditions 
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where primes denote differentiation with respect to η, ff αν /Pr =  is the Prandtl 
number and the parameter β is the Hartree pressure gradient parameter which 
corresponds to β = Ω / π for a total angle Ω of the wedge defined as 
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The thermophysical properties of the fluid and nanoparticles are given in Table 1 
(see Oztop and Abu-Nada [27]). 

The skin friction coefficient Cf is defined as 
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with τW as the surface shear stress which is given by 
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Substituting Eq. (9) into Eqs. (16) and (17) we obtain 
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where Rex = uex / νf is the local Reynolds number and PDP stands for pressure drop 
parameter that shows pressure drop over a wedge in Falkner-Skan flow 
quantitatively. 

The local Nusselt number Nux is defined as 
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in which qw is the surface heat flux which is designed as 
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Using Eqs. (9), (19) and (20), we have 
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Here HTP stands for heat transfer parameter that shows heat transfer over a 
wedge in Falkner-Skan flow. 

For the simulation of nanofluid flow field, Eqs. (11) and (12) along with 
boundary conditions (13) and (14) are solved numerically using two methods of 
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MATLAB bvp4c function and RK4. Further, numerical results are compared with 
those reported in the literature [25]. The numerical values of PDP and HTP for 
different values of m and φ  are presented in Tables 2 and 3, respectively. 
 
3. Modeling using GMDH type neural networks 

 
Neural networks are composed of a number of components, named neuron, which 
are inspired by nature. These neurons construct different hidden layers in a neural 
network and connections between components make the network function. In 
GMDH type neural network, different pairs of neurons are connected together 
using a quadratic polynomial and make a neuron in next hidden layer. Such neural 
networks are adjusted so that a particular input leads to a specific target output. 
General function defining output with respect to input variables in a GMDH type 
neural network has the form of volterra functional series which is known as the 
Kolmogorov–Gabor polynomial [28,29]  as in 
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Eq. (22) can be constructed using different quadratic polynomials in the form of 
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which is consisted of two neurons to make a neuron in next hidden layer.  
Coefficients   in Eq. (23) should be calculated to perform minimum 

difference between neural network approximated value of output, , and its actual 
value, , for each pair of (x

ia
ŷ

y i, xj) as the input variables. These coefficients are 
calculated using regression technique in a way that minimum difference between 

 and ŷ y is obtained for all M of input-output data in a least square sense, that is  
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Singular value decomposition (SVD) is a popular technique to solve least 
square problems in existence of some singularities in the normal equations [20]. 
Using proposed technique in ref. [30, 31], the optimum values of  are calculated. 
According to ref. [32], self organizing GMDH type neural network performance is 
increased using such a technique of SVD. According to ref. [20], it seems that such 
application of SVD may remove the problem of superfluous data reported in ref. 
[33]. 

ia

Genetic algorithm is used to find optimum network architecture between 
possible topologies [34]. Chromosomes are represented as proposed in ref. [35] in a 
way that neurons in different layers can be connected to neurons in layers far away.  
A sample GS-GMDH neural network is depicted in Fig. 2 which unlike the CS-
GMDH neural networks, neurons connections can happen between every different 
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layers not necessarily successive ones. In Figure 2, neuron ad in the first hidden 
layer is connected to the output layer by directly going through the second hidden 
layer. Therefore, it is now very easy to notice that the name of output neuron 
(network’s output) includes ad twice as abccadad. In other words, a virtual neuron 
named adad has been constructed in the second hidden layer and used with abcc in 
the same layer to make the output neuron abccadad as shown in Figure 2. 

Crossover and mutation are deployed to evolve generations [23] and 
roulette wheel selection approach is used for choosing two parents producing two 
offspring and selecting dominant chromosomes to transport to next generation. 
Also, elitism is used to bring the best population to next generation. 

Crossover operator is depicted for a selected individual in the Figures 3 
and 4. It should be noted that crossover location should be chosen randomly from 
set of  { }11 2 32 , 2 ,2 , , 2 ln +K  where nl is the number of hidden layers of the 

chromosome with the smaller length [20]. Mutation operator simply implemented 
by changing values of some genes. 
 
4. Methodology for parametric optimization 

 
In a multi-objective optimization problem, multiple objectives are optimized 

simultaneously which, there does not necessarily exist a solution that is best with 
respect to all objectives. Therefore, there is a set of optimum solutions that may be 
best in one objective but worst in another. In general, it can be mathematically 

defined as Find the vector * * * * *
1 2 3, , , ,

T

nX x x x x⎡ ⎤= ⎣ ⎦K  to optimize 
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where * nX ∈ℜ  is the vector of decision or design variables, and  is 
the vector of objective functions.  

( ) kF X ∈ℜ

In implementing genetic algorithm, each chromosome is represented in 
binary string. The genetic operators of crossover and mutation are implemented to 
produce two offspring from two parents. The natural roulette wheel selection 
method is used for choosing two parents producing two offspring. The crossover 
operator for two selected individuals is simply accomplished by exchanging the 
tails of two chromosomes from a randomly chosen point. A simple mutation is 
performed by inverting the value of each gene with a small probability. Defining 
all objective functions in a way to be minimized, such multi-objective 
minimization based on the Pareto approach can be conducted using some 
definitions [20]: 
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4.1. Definition of Pareto dominance. 
A vector [ ]1 2, , , k
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It means that there is at least one uj which is smaller than vj whilst the rest u’s are 
either smaller or equal to corresponding v’s. 
 
4.2. Definition of Pareto optimality. 
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It means that the solution X* is said to be Pareto optimal (minimal) if no other 
solution can be found to dominate X* using the definition of Pareto dominance. 
 
4.3. Definition of Pareto set. 
For a given multi-objective problem, a Pareto set *℘ is a set in the decision variable 
space consisting of all the Pareto optimal vectors 

( ) ( ){ }* X X F X F X′ ′℘ = ∈Ω ∃ ∈ Ω </ . In other words, there is no other X ′  in 

that dominates anyΩ X ∈Ω . 
 
4.4. Definition of Pareto front. 
For a given multi-objective problem, the Pareto front *T℘ is a set of vectors of 
objective functions which are obtained using the vectors of decision variables in 
the Pareto set *℘ , that is 

( ) ( ) ( ) ( )( ){ }* *
1 2, , , :kT F X f X f X f X X℘ = = ∈K ℘

 
Therefore, the Pareto front *T℘ is a set of the vectors of objective functions 
mapped from *℘ . 
 
5. Modeling of HTP and PDP using GMDH-type neural network 

 
HTP and PDP are considered as outputs which are dependent on input 

variables of are Falkner-Skan power law parameter and volume fraction of 
nanoparticle. Due to simultaneous solution of Eqs. (11) and (12) to find HTP and 
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PDP, equal number of input-output data pairs are considered to train GMDH-type 
neural network for both outputs. In order to demonstrate the prediction ability of 
the evolved GMDH type neural networks, the data in both input–output data have 
been divided into two different sets, namely, training and testing sets. 

The training set consists of 80 out of the 100 input–output data pairs for 
HTP and alike for PDP which is used for training the neural network models using 
the method presented in Section 5. Remained 20 input-output data are then 
evaluated using trained GMDH-type neural network to convince ability to predict 
outputs. Genetic algorithm is used to find optimum network architecture to best 
training set data prediction. A population of 40 individuals with a crossover 
probability (Pc) of 0.7 and mutation probability (Pm) 0.08 has been used in 300 
generations for both outputs. The corresponding polynomial representation for 
HTP is as follows: 
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Similarly, the corresponding polynomial representation of the model for PDP is in 
the form of 
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The structures of the evolved three hidden layer GMDH type neural 
network for HTP and PDP are shown in the Figures 5 and 6 for HTP and PDP, 
respectively. As depicted in the Figures 7 and 8, the evolved GMDH-type neural 
network successfully model HTP and PDP, respectively. It is evident that this 
metamodel in terms of simple polynomial equations predict the outputs of the 
testing data that have not been used during the training process. 

Obtained metamodels can now be utilized in a Pareto multi-objective 
optimization of the Falkner-Skan wedge flow considering both HTP and PDP as 
conflicting objectives. 
 
6. Pareto optimization of Falkner-Skan wedge flow using polynomial neural 
network models 

 
In order to investigate the optimal performance of the Falkner-Skan wedge 

flow in different values of φ and m, the metamodel obtained in the previous section 
are now deployed in a multi-objective optimization procedure. Two objective 
functions of HTP and PDP corresponding to design parameters of m and φ are 
easily evaluated using trained polynomial neural network which is obtained in 
pervious section. Since both HTP and PDP are maximized due to increasing the 
value of m and φ, while design goal is maximizing of HTP and decreasing in 
amount of PDP, therefore using multi-objective optimization algorithm is 
inevitable. Multi-objective optimization process results in non-dominated design 
points of input variables which are named pareto set. Non-domination means that 
improvement of an objective follow with worse value for other objectives.  

Optimization is a time consuming process if objective values 
corresponding to input variables takes long to compute. Therefore, deploying a 
well trained neural network results in less time of optimization. Due to conflict of 
objective functions, it is not possible to find non-dominated pareto front without 
using of a multi-objective optimization algorithm. 

Modified NSGA-II approach [19,20] are deployed in multi-objective 
optimization process where a population size of 60 has been chosen in different 
runs with crossover probability Pc and mutation probability Pm are 0.7 and 0.07, 
respectively. The range of variations for φ and m are assumed to be 0-0.2 and 0–1, 
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respectively. Consequently, a total number of 71 non-dominated optimum design 
points have been obtained, as shown in Figure 9 in the plane of the HTP and PDP. 
Clearly, there are some important optimal design facts between the two objective 
functions that have been discovered by the Pareto optimization of the polynomial 
neural network models obtained using the numerical data of the Falkner-Skan 
wedge flow. There are three optimum design points, namely, a, b and c, whose 
corresponding design variables and objective functions are shown in Table 4. 
These points clearly demonstrate tradeoffs in objective functions HTP and PDP 
from which an appropriate design can be compromisingly chosen.  

It can be readily seen from Figure 10 that for minimum value of m, value 
of HTP significantly increases from a to b with increase in value of φ, while less 
growth in HTP is obtained along with noteworthy increase in PDP corresponding 
to increment of m from b to c. Figures 11 and 12 depict the variations of φ and m 
on HTP. It can be readily seen that φ has more effect on variations of HTP. As can 
be seen from Figures 13 and 14, the value of PDP increases more as a result of 
increase in m value rather than φ. It is clear that such very useful informative 
design facts and tradeoffs have been only unveiled by using the Pareto multi-
objective optimization approach of the simple polynomial neural network 
metamodels of numerical simulation of Falkner-Skan wedge flow. 
 
7.   Conclusions 

 
Genetic algorithms have been successfully used both for optimal design of 

generalized GMDH type neural networks models of HTP and PDP of Falkner-Skan 
wedge flow and for multi-objective Pareto optimization of constructed 
metamodels. Two different polynomial relations for HTP and PDP have been 
found by evolved GS-GMDH type neural networks using some validated numerical 
simulations for input–output data of the Falkner-Skan wedge flow. The derived 
polynomial models have been then used in an evolutionary multi-objective Pareto 
optimization process so that some interesting and informative optimum design 
aspects have been revealed for Falkner-Skan wedge flow with respect to the its 
control variables of φ and m. Consequently, some very important tradeoffs have 
been obtained and proposed based on the Pareto front of two conflicting objective 
functions. Such combined application of GMDH type neural network modeling of 
input–output data and subsequent non-dominated Pareto optimization process of 
the obtained models is very promising in discovering useful and interesting design 
relationships. 
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Nomenclature 
Cf skin friction coefficient Greek 

letters 
 

Cp specific heat at constant pressure α  thermal diffusivity [m2 s-1] 
E mean square of error β  Hartree pressure gradient 

parameter 
f  similarity function φ  volume fraction of solid 

H  auxiliary function Φ  inverse mean square of error 
k thermal conductivity [W m-1K-1] η  similarity variable 
m Falkner–Skan power law parameter μ  Viscosity 
Nux local Nusselt number θ  dimensionless temperature 
Pc crossover probability ρ  Density [Kg m-3] 
Pm mutation probability Ω  total angle of the wedge 
Pr Prandtl number τ  shear stress [N m-2] 
Q heat flux υ  kinematic viscosity [m-2s] 
Re  Reynolds number ψ  stream function [s-1] 
T Temperature [K] subscripts  
U free stream velocity [m s-1] f base fluid 
u, v velocity components [m s-1] nf nanofluids 
ue(x) wedge flow free stream velocity s nano-solid particles 
x, y cartesian coordinates [m] w condition at the wall 
  ∞  ambient condition 
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Table 1. Thermophysical properties of base fluid and nanoparticles 
 

Physical properties Fluid phase 
(water) 

Cu 

Cp (J/kg K) 4179 385 
ρ (kg/m3) 997.1 8933 
k (W/mK) 0.613 400 
α × 10-7 (m2/s) 1.47 1163.1 

 
Table 2. The values of PDP for various values of m and φ 
 

 [2 Rex / (m+1)]1/2Cf

φ m Nor Azizah Yacob [27] bvp4c Rk4 
0.1 0 0.7179 0.7179 0.7179 
0.2  0.9992 0.9992 0.9992 
0.1 0.5 1.5881 1.5882 1.5882 
0.2  2.2105 2.2106 2.2106 
0.1 1 1.8843 1.8843 1.8843 
0.2  2.6226 2.6227 2.6227 

 
Table 3. The values of HTP for various values of m and φ 
 

 [(m+1) Rex / 2]-1/2Nux

φ m Nor Azizah Yacob [27] bvp4c Rk4 
0.1 0 1.11 1.1101 1.1101 
0.2  1.3342 1.3342 1.3342 
0.1 0.5 1.3472 1.3473 1.3473 
0.2  1.6048 1.6049 1.6049 
0.1 1 1.4043 1.4043 1.4043 
0.2  1.6692 1.6693 1.6693 

 
Table 4. Design variables and objective functions values of significant Pareto 
points 
 

Point φ m HTP PDP 
A 0.0514 0.0515 1.0584 0.7517 
B 0.1999 0.0647 1.4162 1.3157 
C 0.1987 0.9805 1.6639 2.5859 
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Figure Caption 
 
Fig. 1. Schematic of physical model 
Fig. 2. A generalized GMDH network structure of a chromosome 
Fig. 3. Crossover operation for two individuals in generalized GMDH type  
networks 
Fig. 4. Crossover operation on two generalized GMDH type networks 
Fig. 5. Evolved structure of generalized GMDH type network for HTP value 
Fig. 6. Evolved structure of generalized GMDH type network for PDP value 
Fig. 7. Comparison of HTP for numerical and GMDH result 
Fig. 8. Comparison of PDP for numerical and GMDH result 
Fig. 9. Pareto front of two objectives HTP and PDP 
Fig. 10. Variation of Pareto points in plane of m and φ 
Fig. 11. Variation of Pareto points in plane of HTP and φ 
Fig. 12. Variation of Pareto points in plane of HTP and m 
Fig. 13. Variation of Pareto points in plane of PDP and φ 
Fig. 14. Variation of Pareto points in plane of PDP and m 
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Nano-mayelərin paz-şəkilli Falkner-Skan axınının neyron  şəbəkələrin 
optimallaşdırılmasına  əsaslanan genetik alqoritmlərdən  istifadə etməklə 

Pareto optimallaşdırılması 
 

  A. P.M.Fallah, A. Moradi, T. Hayat, Awatif A. Hendi 

 
XÜLASƏ 

 
Nano mayenin paz-şəkilli axini zamanı yaranan sərhəd zolagının dayanıqlılıgı 

ədədi arashdırılır. Neyron şəbəkələr tipli verilənlərin işləmməsi üçün evolyusiya etmiş qrup 
metodu əsasında dizayn parametrlərinə nəzərən təzyiqin düşməsi, Folkner-Skan qanununun 
parametri ve istilik mübadiləsi parametrinin modellləşdirilməsi  üçün  iki metamodel təklif 
olunur. Alınmiş polinom neyron şəbəkələr çoxparametrli genetik algoritmlərdən (dominant 
olmayan seçim üçün genetik algoritmləri) istifadə etməklə Pareto optimal həllər adlanan 
optimal həllər çoxluğunun tapılmasi üçün istifadə olunur. Göstərilir ki, paz-shekilli axının 
Folkner-Skan çevirmələrində iştirak edən lazımlı informasiya çox kriteriyalı Pareto 
optimallaşdirma nəticəsində əldə edilə bilər. 

Açar sözlər: nanofluid,  Falkner-Skan, neyron şəbəkələr, Pareto optimallaşdırma, 
genetik alqoritm. 

 
 

Парето оптимизация клинообразного патока типа Фалкнера-Скана 
нанофлюида используя генетического алгоритма основанного на 

моделирования нейронных сетей 
 

А.П.М. Фаллах, А.Мора и, Т.Хайят, А.А. Хенди д  
РЕЗЮМЕ 

 
Численно исследуется устойчивый двумерный пограничный слой 

клинообразного потока статического нанофлюида. Получены два метамодели на 
основе эволюционированного групп методa для обработки данных типа нейронных 
сетей, для моделирования параметра падения давления и параметрa теплообмена  
относительно переменных проектирования  доля обмена и параметра закона 
Фолкнера-Скана для  посмотренной задачи. Полученные  полиномиальные 
нейронныe сети использованы для нахождения множество оптимальных решений, 
известный как Парето оптимальных решений, с использованием многоцелевых 
генетическиx алгоритмoв (генетическиe алгоритмы не доминируемой сортировки). 
Показано, что информация, содержащейся представлении Фолкнерa-Сканa клинo-
образного потокa может быть обнаруженa в результате  многокритериальной Парето 
оптимизации.  
 Ключевые слова: нанофлюид, Фалкнер-Скан, нейронные сети,  Парето 
оптимизация, генетический алгоритм. 
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